기본 콘텐츠로 건너뛰기

[ML] 결정트리(Decision Tree) 모델

[Linear Algebra] 코시-슈바르츠와 삼각부등식

코시-슈바르츠와 삼각부등식

코시-슈바르츠 부등식(Cauchy-Schwarz Inequality)

임의의 두 벡터 a와 b의 곱의 크기는 각 벡터의 노름(norm)의 곱보다 크지 않습니다. 이 관계를 코시-슈바르츠 부등식(Cauchy-Schwarz Inequality)이라 하며 식 1과 같이 나타낼 수 있습니다.

$$\vert {a^Tb}\vert \le \Vert{a}\Vert \Vert{b}\Vert$$(식 1)

식 1을 벡터의 요소별로 풀어 쓰면 식 2와 같습니다.

$$\vert {a_1b_1+\cdots + a_nb_n}\vert \le \sqrt{a_1^2+\cdots+a_n^2}\sqrt{b_1^2+\cdots+b_n^2}$$(식 2)

식 2에서 두 벡터가 a, b 모두 0일 경우에만 등호가 성립합니다. 그러므로 두 벡터 모두 0이 아닌 조건에서 코시-슈바르츠 부등식을 증명할 수 있습니다(식 3).

\begin{align} \text{가정}:&\;a\ne 0, \; b\ne 0, \;\alpha=\Vert {a} \Vert,\; \beta=\Vert{b}\Vert \\ 0&\le \Vert {\beta a - \alpha a} \Vert^2\\ & = \Vert {\beta a} \Vert^2 - 2(\beta a)^T \alpha b +\Vert {\alpha b} \Vert^2\\ & = \beta^2\Vert { a} \Vert^2 - 2\alpha \beta (a^Tb) +\alpha^2\Vert { b} \Vert^2\\ & = \Vert { b} \Vert^2\Vert { a} \Vert^2 - 2\Vert {a} \Vert \Vert { b} \Vert (a^Tb) +\Vert { a} \Vert^2\Vert { b} \Vert^2\\ & = 2\Vert { b} \Vert^2\Vert { a} \Vert^2 -2\Vert {a} \Vert \Vert { b} \Vert (a^Tb) \\ \Leftrightarrow &\; \Vert {a} \Vert \Vert { b} \Vert (a^Tb) \le \Vert { b} \Vert^2\Vert { a} \Vert^2\\ & \therefore \;\vert a^Tb \vert \le \Vert { b} \Vert \Vert { a} \Vert \end{align}(식 3)

a ≠ 0, b ≠ 0의 조건하에서 Cauchy-Schwarz 부등식에서 좌항과 우항이 같은 경우는 ‖βa − αb‖ = 0, 즉 βa = αb인 경우에만 발생합니다. 이는 벡터 a ≠ b이라면 각 벡터가 서로의 스칼라 배수임을 의미합니다. 따라서 Cauchy-Schwarz 부등식은 벡터 중 하나가 다른 벡터의 배수일 때 동등하게 유지됩니다. 다른 모든 경우에는 엄격한 부등식으로 유지됩니다.

iner
u=np.array([-1,2])
v=np.array([4, -2])
iner=u@v
print(abs(iner))
8
norm_u=la.norm(u)
norm_v=la.norm(v)
(norm_u*norm_v).round(3)
10.0

삼각 부등식(triangle inequality)

임의의 두 벡터에 대해 식 4가 성립됩니다. 즉, 두 벡터 합의 노름은 각 벡터 노름의 합보다 작거나 같습니다. 이 관계를 삼각부등식(triangle inequality)이라고 합니다.

\begin{align} \Vert {a+b} \Vert^2&\le \Vert{a}\Vert^2+2\Vert{a}\Vert \Vert{b}\Vert+\Vert{b}\Vert^2\\ & \le \left( \Vert{a}\Vert+\Vert{b}\Vert\right)^2\\ \therefore\;& \Vert {a+b} \Vert \le \Vert {a} \Vert + \Vert {b} \Vert\end{align}(식 4)
la.norm(u+v)
3.0
(norm_u+norm_v).round(2)
6.71

댓글

이 블로그의 인기 게시물

[Linear Algebra] 유사변환(Similarity transformation)

유사변환(Similarity transformation) n×n 차원의 정방 행렬 A, B 그리고 가역 행렬 P 사이에 식 1의 관계가 성립하면 행렬 A와 B는 유사행렬(similarity matrix)이 되며 행렬 A를 가역행렬 P와 B로 분해하는 것을 유사 변환(similarity transformation) 이라고 합니다. $$\tag{1} A = PBP^{-1} \Leftrightarrow P^{-1}AP = B $$ 식 2는 식 1의 양변에 B의 고유값을 고려한 것입니다. \begin{align}\tag{식 2} B - \lambda I &= P^{-1}AP – \lambda P^{-1}P\\ &= P^{-1}(AP – \lambda P)\\ &= P^{-1}(A - \lambda I)P \end{align} 식 2의 행렬식은 식 3과 같이 정리됩니다. \begin{align} &\begin{aligned}\textsf{det}(B - \lambda I ) & = \textsf{det}(P^{-1}(AP – \lambda P))\\ &= \textsf{det}(P^{-1}) \textsf{det}((A – \lambda I)) \textsf{det}(P)\\ &= \textsf{det}(P^{-1}) \textsf{det}(P) \textsf{det}((A – \lambda I))\\ &= \textsf{det}(A – \lambda I)\end{aligned}\\ &\begin{aligned}\because \; \textsf{det}(P^{-1}) \textsf{det}(P) &= \textsf{det}(P^{-1}P)\\ &= \textsf{det}(I)\end{aligned}\end{align} 유사행렬의 특성 유사행렬인 두 정방행렬 A와 B는 'A ~ B' 와 같

[matplotlib] 히스토그램(Histogram)

히스토그램(Histogram) 히스토그램은 확률분포의 그래픽적인 표현이며 막대그래프의 종류입니다. 이 그래프가 확률분포와 관계가 있으므로 통계적 요소를 나타내기 위해 많이 사용됩니다. plt.hist(X, bins=10)함수를 사용합니다. x=np.random.randn(1000) plt.hist(x, 10) plt.show() 위 그래프의 y축은 각 구간에 해당하는 갯수이다. 빈도수 대신 확률밀도를 나타내기 위해서는 위 함수의 매개변수 normed=True로 조정하여 나타낼 수 있다. 또한 매개변수 bins의 인수를 숫자로 전달할 수 있지만 리스트 객체로 지정할 수 있다. 막대그래프의 경우와 마찬가지로 각 막대의 폭은 매개변수 width에 의해 조정된다. y=np.linspace(min(x)-1, max(x)+1, 10) y array([-4.48810153, -3.54351935, -2.59893717, -1.65435499, -0.70977282, 0.23480936, 1.17939154, 2.12397372, 3.0685559 , 4.01313807]) plt.hist(x, y, normed=True) plt.show()

R 미분과 적분

내용 expression 미분 2차 미분 mosaic를 사용한 미분 적분 미분과 적분 R에서의 미분과 적분 함수는 expression()함수에 의해 생성된 표현식을 대상으로 합니다. expression expression(문자, 또는 식) 이 표현식의 평가는 eval() 함수에 의해 실행됩니다. > ex1<-expression(1+0:9) > ex1 expression(1 + 0:9) > eval(ex1) [1] 1 2 3 4 5 6 7 8 9 10 > ex2<-expression(u, 2, u+0:9) > ex2 expression(u, 2, u + 0:9) > ex2[1] expression(u) > ex2[2] expression(2) > ex2[3] expression(u + 0:9) > u<-0.9 > eval(ex2[3]) [1] 0.9 1.9 2.9 3.9 4.9 5.9 6.9 7.9 8.9 9.9 미분 D(표현식, 미분 변수) 함수로 미분을 실행합니다. 이 함수의 표현식은 expression() 함수로 생성된 객체이며 미분 변수는 다음 식의 분모의 변수를 의미합니다. $$\frac{d}{d \text{변수}}\text{표현식}$$ 이 함수는 어떤 함수의 미분의 결과를 표현식으로 반환합니다. > D(expression(2*x^3), "x") 2 * (3 * x^2) > eq<-expression(log(x)) > eq expression(log(x)) > D(eq, "x") 1/x > eq2<-expression(a/(1+b*exp(-d*x))); eq2 expression(a/(1 + b * exp(-d * x))) > D(eq2, "x") a * (b * (exp(-d * x) * d))/(1 + b