기본 콘텐츠로 건너뛰기

[ML] 결정트리(Decision Tree) 모델

[Linear Algebra] 항등 행렬 (Identity Matrix) 과 대각행렬(Diagonal matix)

항등 행렬 (Identity Matrix) 과 대각행렬(Diagonal matix)

항등 행렬 (Identity Matrix)

항등 행렬은 정방 행렬 중 대각 원소가 모두 1이고 그 외 모든 원소들은 0인 행렬이며 In으로 나타냅니다. n은 행 또는 열의 수를 나타냅니다. 항등 행렬과의 행렬 곱은 그 행렬 자신이 됩니다(식 1).

AI = A(식 1)
I: 항등행렬

np.eye(n) 함수로 n×n 차원의 항등행렬을 생성할 수 있습니다.

np.random.seed(1)
A=np.random.randint(1,10, (3,3))
print(A)
[[6 9 6]
 [1 1 2]
 [8 7 3]]
I=np.eye(3)
print(I)
[[1. 0. 0.]
 [0. 1. 0.]
 [0. 0. 1.]]
print(A@I)
[[6. 9. 6.]
 [1. 1. 2.]
 [8. 7. 3.]]

대각행렬(Diagonal matix)

식 2와 같이 정방 행렬의 주 대각 요소들을 제외한 다른 요소들이 0인 행렬을 대각 행렬이라 합니다. 주 대각 요소를 포함하여 모든 요소가 0인 영행렬, 그리고 항등 행렬은 대표적인 대각 행렬입니다.

$$\begin{bmatrix}{\color{red}a_{11}} & 0 & 0\\ 0 & {\color{red}a_{22}} & 0\\0 & 0 & {\color{red}a_{33}}\end{bmatrix}$$(식 2)

대각 행렬은 np.diag() 함수를 사용하여 생성할 수 있습니다.

print(np.diag([1,2,3]))
[[1 0 0]
 [0 2 0]
 [0 0 3]]

댓글

이 블로그의 인기 게시물

[Linear Algebra] 유사변환(Similarity transformation)

유사변환(Similarity transformation) n×n 차원의 정방 행렬 A, B 그리고 가역 행렬 P 사이에 식 1의 관계가 성립하면 행렬 A와 B는 유사행렬(similarity matrix)이 되며 행렬 A를 가역행렬 P와 B로 분해하는 것을 유사 변환(similarity transformation) 이라고 합니다. $$\tag{1} A = PBP^{-1} \Leftrightarrow P^{-1}AP = B $$ 식 2는 식 1의 양변에 B의 고유값을 고려한 것입니다. \begin{align}\tag{식 2} B - \lambda I &= P^{-1}AP – \lambda P^{-1}P\\ &= P^{-1}(AP – \lambda P)\\ &= P^{-1}(A - \lambda I)P \end{align} 식 2의 행렬식은 식 3과 같이 정리됩니다. \begin{align} &\begin{aligned}\textsf{det}(B - \lambda I ) & = \textsf{det}(P^{-1}(AP – \lambda P))\\ &= \textsf{det}(P^{-1}) \textsf{det}((A – \lambda I)) \textsf{det}(P)\\ &= \textsf{det}(P^{-1}) \textsf{det}(P) \textsf{det}((A – \lambda I))\\ &= \textsf{det}(A – \lambda I)\end{aligned}\\ &\begin{aligned}\because \; \textsf{det}(P^{-1}) \textsf{det}(P) &= \textsf{det}(P^{-1}P)\\ &= \textsf{det}(I)\end{aligned}\end{align} 유사행렬의 특성 유사행렬인 두 정방행렬 A와 B는 'A ~ B' 와 같

[matplotlib] 히스토그램(Histogram)

히스토그램(Histogram) 히스토그램은 확률분포의 그래픽적인 표현이며 막대그래프의 종류입니다. 이 그래프가 확률분포와 관계가 있으므로 통계적 요소를 나타내기 위해 많이 사용됩니다. plt.hist(X, bins=10)함수를 사용합니다. x=np.random.randn(1000) plt.hist(x, 10) plt.show() 위 그래프의 y축은 각 구간에 해당하는 갯수이다. 빈도수 대신 확률밀도를 나타내기 위해서는 위 함수의 매개변수 normed=True로 조정하여 나타낼 수 있다. 또한 매개변수 bins의 인수를 숫자로 전달할 수 있지만 리스트 객체로 지정할 수 있다. 막대그래프의 경우와 마찬가지로 각 막대의 폭은 매개변수 width에 의해 조정된다. y=np.linspace(min(x)-1, max(x)+1, 10) y array([-4.48810153, -3.54351935, -2.59893717, -1.65435499, -0.70977282, 0.23480936, 1.17939154, 2.12397372, 3.0685559 , 4.01313807]) plt.hist(x, y, normed=True) plt.show()

R 미분과 적분

내용 expression 미분 2차 미분 mosaic를 사용한 미분 적분 미분과 적분 R에서의 미분과 적분 함수는 expression()함수에 의해 생성된 표현식을 대상으로 합니다. expression expression(문자, 또는 식) 이 표현식의 평가는 eval() 함수에 의해 실행됩니다. > ex1<-expression(1+0:9) > ex1 expression(1 + 0:9) > eval(ex1) [1] 1 2 3 4 5 6 7 8 9 10 > ex2<-expression(u, 2, u+0:9) > ex2 expression(u, 2, u + 0:9) > ex2[1] expression(u) > ex2[2] expression(2) > ex2[3] expression(u + 0:9) > u<-0.9 > eval(ex2[3]) [1] 0.9 1.9 2.9 3.9 4.9 5.9 6.9 7.9 8.9 9.9 미분 D(표현식, 미분 변수) 함수로 미분을 실행합니다. 이 함수의 표현식은 expression() 함수로 생성된 객체이며 미분 변수는 다음 식의 분모의 변수를 의미합니다. $$\frac{d}{d \text{변수}}\text{표현식}$$ 이 함수는 어떤 함수의 미분의 결과를 표현식으로 반환합니다. > D(expression(2*x^3), "x") 2 * (3 * x^2) > eq<-expression(log(x)) > eq expression(log(x)) > D(eq, "x") 1/x > eq2<-expression(a/(1+b*exp(-d*x))); eq2 expression(a/(1 + b * exp(-d * x))) > D(eq2, "x") a * (b * (exp(-d * x) * d))/(1 + b