기본 콘텐츠로 건너뛰기

벡터와 행렬에 관련된 그림들

확률과 주요통계량: 분산

확률과 주요통계량: 분산

관련 내용

분산 (Variance)

분산(variance)은 데이터 변동성을 나타내는 것으로 식 1과 같이 계산되며 분산의 제곱근이 표준편차(standard deviation, $\sigma$)가 됩니다.

\begin{align}\sigma^2&=E(X-\mu)^2\\&=(x_1-\mu)^2P(X=x_1)+ \cdots+(x_k-\mu)^2P(X=x_k)\\&=\sum^k_{i=1} (x_k-\mu)^2P(X=x_k)\end{align}(식 1)

자료 분포에 대한 퍼짐의 척도인 분산은 각 데이터와 평균사이의 편차 제곱에 대한 가중 평균입니다. 식 1은 식 2와 같이 간략하게 정리됩니다.

\begin{align}\sigma^2&=\sum^k_{i=1} (x_i-\mu)^2P(X=x_i)\\&=\sum^k_{i=1}(x_i^2-2x_i\mu+\mu^2)f(x_i)\\&=\sum^k_{i=1} x_i^2f(x_i) -2\mu \sum^k_{i=1} x_if(x_i)+ \mu^2\\&=\sum^k_{i=1} x_i^2f(x_i)-2\mu^2+\mu^2\\&=\sum^k_{i=1} x_i^2f(x_i)-\mu^2\\&=E(X^2)-(E(X))^2\\ \because& \sum^k_{i=1} x_if(x_i)=\mu, \quad \sum^k_{i=1} f(x_i)=1 \end{align}(식 2)

분산은 확률변수의 분포를 나타내는 지표이며 식 2에서 나타낸 것과 같이 2차 모멘트와 1차 모멘트의 차로 계산됩니다. 즉, 분산은 기대값으로부터 파생되므로 분산 역시 기대값의 특성인 선형결합이 가능합니다. 그러나 식 3과 같이 분산의 선형결합은 기대값의 그것과는 다른 형태를 보입니다.

\begin{align}\text{var}(ax+b)&=\sigma_{ax+b}^2\\&=E[(ax+b-\mu_{ax+b})^2]\\&=E[(ax+b-E(ax+b))^2] \\ &=E[(ax+b-aE(x)-b)^2]\\&=E[(ax-aE(x))^2]\\&=a^2E[(x-\mu)^2]\\&=a^2\sigma_x^2\end{align}(식 3)

식 3과 같이 변수에 첨가한 상수는 변수의 모든 요소에 같은 값을 주는 것으로 변수의 분산에 영향을 주지 않습니다.

예 1)

확률변수 X의 확률질량함수는 다음과 같습니다.

$$f(x)=\frac{x}{8}, \quad x=1,\, 2,\, 5$$

E(X)와 Var(X)를 결정합니다.

x=np.array([1,2,5])
f=x/8
print(f)
[0.125 0.25 0.625]
E=np.sum(f*x); E
3.75
var=np.sum((x**2*f))-E**2; var
2.6875

예 2)

연속확률변수 X의 확률밀도함수는 다음과 같습니다.

$$f(x)=\frac{x+1}{8}, \quad 2 \lt x \lt 4$$

E(X)와 Var(X)를 결정합니다.

평균과 분산은 PDF 함수의 적분을 사용하여 계산됩니다. 적분 연산은 sympy모듈의 itegrate() 함수를 적용합니다.

x=symbols("x")
f=(x+1)/8
E=integrate(x*f, (x, 2, 4))
print(E)
37/12
Var=integrate(x**2*f,(x, 2, 4))-E**2
print(Var)
47/144

예 3)

표 1과 같이 주사위 1개를 시행하여 나오는 눈에 따라 점수를 지정하는 규칙을 기준으로 두 종류의 게임을 합니다.

표 1 주사위 게임
눈의 수(z) 1 2 3 4 5 6
게임1(x) 1 2 3 4 5 6
게임2(y) 3 0 6 0 0 12
P(z) 1/6 1/6 1/6 1/6 1/6 1/6
  1. 각 게임의 기대값과 분산을 결정합니다.
  2. 두 게임들을 결합하여 생성된 랜덤변수 게임3의 기대값과 분산을 결정 합니다.

a)

z=np.arange(1, 7) #눈의 수
g1=np.arange(1, 7) #게임1
g2=np.array([3,0,6,0,0,12]) #게임 2
p=np.repeat(1/6, 6) # 확률함수
E_g1=np.sum(g1*p); E_g1
3.5
var_g1=np.sum(g1**2*p)-E_g1**2
round(var_g1, 3)
2.917
E_g2=np.sum(g2*p)
E_g2
3.5
var_g2=np.sum(g2**2*p)-E_g2**2
round(var_g2, 3)
19.25

b) 게임 3=g3

g3=g1+g2
print(g3)
[ 4  2  9  4  5 18]
E_g3=np.sum(g3*p); E_g3
7
var_g3=np.sum(g3**2*p)-E_g3**2
round(var_g3, 3)
28.667

위 결과의 g3의 기대값은 g1, g2의 각 기대값의 합과 같습니다. 그러나 분산은 각 분산의 합에 일치하지 않습니다.

E_g3 ==E_g1+E_g2
True
var_g3 ==var_g1+var_g2
False

위의 결과와 같이 결합 변수의 분산과 각 변수의 분산의 합은 일치하지 않습니다. 이 차이는 식 4와 같이 결합변수의 분산 유도 과정으로 설명할 수 있습니다.

\begin{align} \text{var}(aX+bY)&=E[(aX+bY-(a\mu_x+b\mu_y))^2]\\0 &=E[(a(X-\mu_x)+b(Y-\mu_y))^2]\\&=E[a^2(X-\mu_x)^2+2ab(X-\mu_x)(Y-\mu_y)+b^2(Y-\mu_y)^2]\\&=a^2E(X-\mu_x)^2+2abE[(X-\mu_x)(Y-\mu_y)]+b^2E(Y-\mu_y)^2\\&=a^2E(X-\mu_x)^2+b^2E(Y-\mu_y)^2\\ &=a^2\text{var}(X)+b^2\text{var}(Y)\\\because \text{if}\;& X\,\cap\,Y=\varnothing \Rightarrow E[(X-\mu_x)(Y-\mu_y)]=0\end{align}(식 4)

식 4에서 E[(X −µx)(Y −µY )]는 두 변수의 교호작용을 나타내는 것으로 두 변수가 독립인 경우 그 교호작용의 값은 0이 됩니다. 그러므로 예제 3의 변수 g1, g2와 결합변수 g3와 분산의 차이는 두 변수가 독립이 아니라는 정보를 제공합니다.

댓글

이 블로그의 인기 게시물

[Linear Algebra] 유사변환(Similarity transformation)

유사변환(Similarity transformation) n×n 차원의 정방 행렬 A, B 그리고 가역 행렬 P 사이에 식 1의 관계가 성립하면 행렬 A와 B는 유사행렬(similarity matrix)이 되며 행렬 A를 가역행렬 P와 B로 분해하는 것을 유사 변환(similarity transformation) 이라고 합니다. $$\tag{1} A = PBP^{-1} \Leftrightarrow P^{-1}AP = B $$ 식 2는 식 1의 양변에 B의 고유값을 고려한 것입니다. \begin{align}\tag{식 2} B - \lambda I &= P^{-1}AP – \lambda P^{-1}P\\ &= P^{-1}(AP – \lambda P)\\ &= P^{-1}(A - \lambda I)P \end{align} 식 2의 행렬식은 식 3과 같이 정리됩니다. \begin{align} &\begin{aligned}\textsf{det}(B - \lambda I ) & = \textsf{det}(P^{-1}(AP – \lambda P))\\ &= \textsf{det}(P^{-1}) \textsf{det}((A – \lambda I)) \textsf{det}(P)\\ &= \textsf{det}(P^{-1}) \textsf{det}(P) \textsf{det}((A – \lambda I))\\ &= \textsf{det}(A – \lambda I)\end{aligned}\\ &\begin{aligned}\because \; \textsf{det}(P^{-1}) \textsf{det}(P) &= \textsf{det}(P^{-1}P)\\ &= \textsf{det}(I)\end{aligned}\end{align} 유사행렬의 특성 유사행렬인 두 정방행렬 A와 B는 'A ~ B' 와 같...

[sympy] Sympy객체의 표현을 위한 함수들

Sympy객체의 표현을 위한 함수들 General simplify(x): 식 x(sympy 객체)를 간단히 정리 합니다. import numpy as np from sympy import * x=symbols("x") a=sin(x)**2+cos(x)**2 a $\sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}$ simplify(a) 1 simplify(b) $\frac{x^{3} + x^{2} - x - 1}{x^{2} + 2 x + 1}$ simplify(b) x - 1 c=gamma(x)/gamma(x-2) c $\frac{\Gamma\left(x\right)}{\Gamma\left(x - 2\right)}$ simplify(c) $\displaystyle \left(x - 2\right) \left(x - 1\right)$ 위의 예들 중 객체 c의 감마함수(gamma(x))는 확률분포 등 여러 부분에서 사용되는 표현식으로 다음과 같이 정의 됩니다. 감마함수는 음이 아닌 정수를 제외한 모든 수에서 정의됩니다. 식 1과 같이 자연수에서 감마함수는 factorial(!), 부동소수(양의 실수)인 경우 적분을 적용하여 계산합니다. $$\tag{식 1}\Gamma(n) =\begin{cases}(n-1)!& n:\text{자연수}\\\int^\infty_0x^{n-1}e^{-x}\,dx& n:\text{부동소수}\end{cases}$$ x=symbols('x') gamma(x).subs(x,4) $\displaystyle 6$ factorial 계산은 math.factorial() 함수를 사용할 수 있습니다. import math math.factorial(3) 6 a=gamma(x).subs(x,4.5) a.evalf(3) 11.6 simpilfy() 함수의 알고리즘은 식에서 공통사항을 찾아 정리하...

sympy.solvers로 방정식해 구하기

sympy.solvers로 방정식해 구하기 대수 방정식을 해를 계산하기 위해 다음 함수를 사용합니다. sympy.solvers.solve(f, *symbols, **flags) f=0, 즉 동차방정식에 대해 지정한 변수의 해를 계산 f : 식 또는 함수 symbols: 식의 해를 계산하기 위한 변수, 변수가 하나인 경우는 생략가능(자동으로 인식) flags: 계산 또는 결과의 방식을 지정하기 위한 인수들 dict=True: {x:3, y:1}같이 사전형식, 기본값 = False set=True :{(x,3),(y,1)}같이 집합형식, 기본값 = False ratioal=True : 실수를 유리수로 반환, 기본값 = False positive=True: 해들 중에 양수만을 반환, 기본값 = False 예 $x^2=1$의 해를 결정합니다. solve() 함수에 적용하기 위해서는 다음과 같이 식의 한쪽이 0이 되는 형태인 동차식으로 구성되어야 합니다. $$x^2-1=0$$ import numpy as np from sympy import * x = symbols('x') solve(x**2-1, x) [-1, 1] 위 식은 계산 과정은 다음과 같습니다. $$\begin{aligned}x^2-1=0 \rightarrow (x+1)(x-1)=0 \\ x=1 \; \text{or}\; -1\end{aligned}$$ 예 $x^4=1$의 해를 결정합니다. solve() 함수의 인수 set=True를 지정하였으므로 결과는 집합(set)형으로 반환됩니다. eq=x**4-1 solve(eq, set=True) ([x], {(-1,), (-I,), (1,), (I,)}) 위의 경우 I는 복소수입니다.즉 위 결과의 과정은 다음과 같습니다. $$x^4-1=(x^2+1)(x+1)(x-1)=0 \rightarrow x=\pm \sqrt{-1}, \; \pm 1=\pm i,\; \pm1$$ 실수...