기본 콘텐츠로 건너뛰기

[matplotlib] 등고선(Contour)

[data analysis]Anderson-Darling(AD) 검정

Anderson-Darling(AD) 검정

관련된 내용

KS 검정은 표본의 분포와 특정분포를 비교하여 표본의 분포를 결정하기 위해 실시합니다. Anderson-Darling(AD) 검정은 KS 검정을 수정한 것으로 꼬리 부분에 더 많은 가중치를 부여합니다. 또한 KS 검정의 검정량 D는 비교하는 두 분포의 거리차로 특정한 분포를 가정하지 않습니다. 반면이 AD 검정은 임계값을 계산할 떄 정규, 균일, 지수등의 특정분포를 사용합니다. 그러므로 민감한 검정이 가능합니다. 각 분포에 대한 임계값 D를 계산하는 것이 가능하지만 일반적으로 다양한 통계 프로그램에서 제공됩니다.이 검정은 scipy.stats.ansderson(x, dist="norm") 함수에 의한 결과로 판단할 수 있습니다.

Anderson-Daring(AD) 검정의 귀무가설과 통계량을 식 1과 같습니다.

H0: 데이터는 특정 분포를 따릅니다.(식 1)
검정 통계량 A2 = -N − S
S=i=1N2i1N[lnF(yi)+ln(1F(yN+1i)]

식 1에서 F(y)는 특정분포의 누적분포 함수이고 yi는 정렬된 데이터(ordered data)입니다.

예 1)

다음은 일정한 기간의 kospi 지수와 kosdaq 지수의 일일 종가 자료입니다.

kospi kosdaq
0 2669.8 878.9
1 2607.3 871.6
2 2587.0 866.2
3 2578.1 878.3
4 2567.8 879.3

각 자료의 정규성을 파악하기 위해 Anderson-Darling 검정을 실시해 봅니다.

위 자료를 생성하기 위한 코드입니다. 자료간의 스케일의 차이를 보정하기 위해 각 자료를 표준화하였습니다.

st=pd.Timestamp(2024,1,1)
et=pd.Timestamp(2024, 5, 30)
kos=fdr.DataReader("KS11",st, et)["Close"]
kq=fdr.DataReader("KQ11", st, et)["Close"]
kos1=(kos-kos.mean())/kos.std()
kq1=(kq-kq.mean())/ex.std()
kos_ad=stats.anderson(kos1)
print(f"통계량: {kos_ad.statistic.round(3)}")
통계량: 2.303
kos_re=pd.DataFrame([kos_ad.critical_values, kos_ad.significance_level], index=['수준별 임계값','유의수준(%)'])
kos_re.T
수준별 임계값 유의수준(%)
0 0.555 15.0
1 0.632 10.0
2 0.759 5.0
3 0.885 2.5
4 1.053 1.0
kq_ad=stats.anderson(ex1)
print(f"통계량: {kq_ad.statistic.round(3)}")
통계량: 0.429
kq_re=pd.DataFrame([kq_ad.critical_values, kq_ad.significance_level], index=['수준별 임계값','유의수준(%)'])
kq_re.T
수준별 임계값 유의수준(%)
0 0.555 15.0
1 0.632 10.0
2 0.759 5.0
3 0.885 2.5
4 1.053 1.0

위 결과에 의하면 kospi의 경우 통계량은 가장 낮은 유의수준 1%(0.01)의 임계값보다 크므로 기각역에 포함됩니다. 그러므로 정규분포에 부합한다는 귀무가설을 기각합니다. 반면에 kq의 경우는 가장 큰 유의수준(15%)보다 작으므로 귀무가설을 기각할 수 없습니다. 즉, kq는 정규성에 부합합니다.

댓글

이 블로그의 인기 게시물

[Linear Algebra] 유사변환(Similarity transformation)

유사변환(Similarity transformation) n×n 차원의 정방 행렬 A, B 그리고 가역 행렬 P 사이에 식 1의 관계가 성립하면 행렬 A와 B는 유사행렬(similarity matrix)이 되며 행렬 A를 가역행렬 P와 B로 분해하는 것을 유사 변환(similarity transformation) 이라고 합니다. (1)A=PBP1P1AP=B 식 2는 식 1의 양변에 B의 고유값을 고려한 것입니다. (식 2)BλI=P1APλP1P=P1(APλP)=P1(AλI)P 식 2의 행렬식은 식 3과 같이 정리됩니다. det(BλI)=det(P1(APλP))=det(P1)det((AλI))det(P)=det(P1)det(P)det((AλI))=det(AλI)det(P1)det(P)=det(P1P)=det(I) 유사행렬의 특성 유사행렬인 두 정방행렬 A와 B는 'A ~ B' 와 같...

[sympy] Sympy객체의 표현을 위한 함수들

Sympy객체의 표현을 위한 함수들 General simplify(x): 식 x(sympy 객체)를 간단히 정리 합니다. import numpy as np from sympy import * x=symbols("x") a=sin(x)**2+cos(x)**2 a sin2(x)+cos2(x) simplify(a) 1 simplify(b) x3+x2x1x2+2x+1 simplify(b) x - 1 c=gamma(x)/gamma(x-2) c Γ(x)Γ(x2) simplify(c) (x2)(x1) 위의 예들 중 객체 c의 감마함수(gamma(x))는 확률분포 등 여러 부분에서 사용되는 표현식으로 다음과 같이 정의 됩니다. 감마함수는 음이 아닌 정수를 제외한 모든 수에서 정의됩니다. 식 1과 같이 자연수에서 감마함수는 factorial(!), 부동소수(양의 실수)인 경우 적분을 적용하여 계산합니다. (식 1)Γ(n)={(n1)!n:자연수0xn1exdxn:부동소수 x=symbols('x') gamma(x).subs(x,4) 6 factorial 계산은 math.factorial() 함수를 사용할 수 있습니다. import math math.factorial(3) 6 a=gamma(x).subs(x,4.5) a.evalf(3) 11.6 simpilfy() 함수의 알고리즘은 식에서 공통사항을 찾아 정리하...

sympy.solvers로 방정식해 구하기

sympy.solvers로 방정식해 구하기 대수 방정식을 해를 계산하기 위해 다음 함수를 사용합니다. sympy.solvers.solve(f, *symbols, **flags) f=0, 즉 동차방정식에 대해 지정한 변수의 해를 계산 f : 식 또는 함수 symbols: 식의 해를 계산하기 위한 변수, 변수가 하나인 경우는 생략가능(자동으로 인식) flags: 계산 또는 결과의 방식을 지정하기 위한 인수들 dict=True: {x:3, y:1}같이 사전형식, 기본값 = False set=True :{(x,3),(y,1)}같이 집합형식, 기본값 = False ratioal=True : 실수를 유리수로 반환, 기본값 = False positive=True: 해들 중에 양수만을 반환, 기본값 = False 예 x2=1의 해를 결정합니다. solve() 함수에 적용하기 위해서는 다음과 같이 식의 한쪽이 0이 되는 형태인 동차식으로 구성되어야 합니다. x21=0 import numpy as np from sympy import * x = symbols('x') solve(x**2-1, x) [-1, 1] 위 식은 계산 과정은 다음과 같습니다. x21=0(x+1)(x1)=0x=1or1x4=1의 해를 결정합니다. solve() 함수의 인수 set=True를 지정하였으므로 결과는 집합(set)형으로 반환됩니다. eq=x**4-1 solve(eq, set=True) ([x], {(-1,), (-I,), (1,), (I,)}) 위의 경우 I는 복소수입니다.즉 위 결과의 과정은 다음과 같습니다. x41=(x2+1)(x+1)(x1)=0x=±1,±1=±i,±1 실수...