기본 콘텐츠로 건너뛰기

벡터와 행렬에 관련된 그림들

[Linear Algebra] 대칭행렬의 대각화

대칭행렬의 대각화

대칭행렬(Symmetric matrix)은 주 대각원소를 기준으로 위 부분과 아래부분의 원소들이 대칭되는 구조이며 대표적인 특성으로 식 1에 나타낸 것과 같이 원시행렬과 전치행렬은 같습니다.

$$\tag{식 1}A = A^T$$

식 1은 모든 대칭행렬에 대한 특성이지만 고유값 분해의 조건을 만족하는 가역적 대칭행렬의 경우는 다음의 특성을 가집니다.

  • 서로 다른 고유값에 대응하는 고유벡터들은 직교(orthogonal) 관계에 있습니다
  • 정규직교(orthonormal) 관계로 변형할 수 있습니다.
  • 식 2와 같이 가역적 대칭행렬을 구성하는 각 열벡터($x_1,\; x_2$)의 내적은 0가 됩니다.

$$\tag{식 2} x_1^Tx_2=0$$

식 2의 증명은 식 3과 같이 λ1x1Tx2를 정리하는 것으로 시작합니다.

\begin{align}\lambda_1 x_1^Tx_2&= (\lambda_1 x_1)^Tx_2\\ & = (Ax_1)^Tx_2\\ \tag{식 3} & = x_1^TA^Tx_2 \\& = x_1^TAx_2\\ & = x_1^T\lambda_2x_2\\& = \lambda_2 x_1^Tx_2\\ \because&\; A=A^T\end{align}

식 3을 정리하면 식 4와 같이 나타낼 수 있습니다.

\begin{align}\lambda_1 x_1^Tx_2& = \lambda_2 x_1^Tx_2\\\tag{식 4} \Rightarrow & \lambda_1 x_1^Tx_2 - \lambda_2 x_1^Tx_2=0\\ \Rightarrow& (\lambda_1 -\lambda_2)x_1^Tx_2=0 \end{align}

식 5.3.4에서 고유값 λ1과 λ2이 서로 다르기 때문에 고유벡터들 x1과 x2의 내적이 0 이어야 합니다. 이것은 두 벡터의 내적이 0인 것으로 그 고유벡터들은 서로 직교 관계에 있음을 의미합니다. 이 고유벡터들을 모두 정규화시키면 즉, 단위벡터화하면 정규 직교 관계가 됩니다.

가역적 대칭행렬인 경우 위 식 4를 성립합니다. 즉, 고유행렬은 정규직교행렬이 됩니다. 그러나 비가역 대칭행렬의 경우 고유벡터의 정규직교성을 나타내기도 합니다. 그러므로 행렬의 정규직교성은 식 5의 확인으로 결정합니다( 정규직교 참조).

$$\tag{식 5}U^TU=I \Leftrightarrow U^T=U^{-1}$$

예 1)

벡터 A의 고유벡터들의 직교성을 결정하여 봅니다.

$$A=\begin{bmatrix}6& -2 & -1\\ -2 & 6 & 1\\ -1& -1 & 5 \end{bmatrix}$$

A=np.array([[6,-2,-1], [-2,6,-1], [-1,-1,5]])
d, P=la.eig(A)
print(P.round(2))
[[ 0.58  0.71 -0.41]
 [ 0.58 -0.71 -0.41]
 [ 0.58  0.    0.82]]

고유행렬의 각 열벡터들사이의 내적을 계산합니다.

for i, j in itertools.combinations(range(3), 2):
    print(round(P[:, i-1]@P[:, j-1],3))
-0.0
-0.0
-0.0

위 결과는 고유벡터들은 서로 직교함을 나타냅니다. 이것은 행렬 A가 대칭행렬로 가역적임을 나타냅니다.

선형독립인 대칭행렬 A는식 6과 같이 대각화가 가능하므로 고유값분해가 성립됩니다.

\begin{align}\tag{식 6}A&=PDP^{-1}\\P:&\;\text{고유행렬}\\D:&\;\text{고유값으로 구성된 대각행렬} \end{align}

다시 말하면 A가 가역적이고 대칭행렬일 경우 고유벡터 행렬은 직교행렬이 되며 직교행렬을 정규직교행렬로 전환할 수 있으므로 이 행렬은 전치행렬과 역행렬이 같습니다. 그러므로 식 7이 성립합니다.

\begin{align}A&=PDP^{-1}\\\tag{식 7} & = PDP^T\\\because &\; P^TP=I \Rightarrow P^T =P^{-1} \end{align}

식 7에서 D는 서로 다른 고유값을 대각 요소로하는 대각행렬, P는 각 고유값에 대응하는 고유행렬입니다. 행렬 A에 대응하는 대각행렬은 다음과 같습니다.

D=np.diag(d)
print(D)
[[3. 0. 0.]
 [0. 8. 0.]
 [0. 0. 6.]]

다음 결과와 같이 A의 고유행렬 P의 각 벡터의 크기는 1이므로 행렬 P는 정규직교행렬입니다. 이 행렬의 경우 전치행렬과 역행렬은 같습니다.

for i in range(P.shape[1]):
    print(F"Norm of {'P'+str(i)}:{la.norm(P[:,i]).round(3)}")
Norm of P0:1.0
Norm of P1:1.0
Norm of P2:1.0
print(np.isclose(la.inv(P), P.T))
[[ True  True  True]
 [ True  True  True]
 [ True  True  True]]

예 2)

다음 행렬 B의 대각화 과정에서의 p는 직교행렬인지를 확인해 봅니다.

$$B=\begin{bmatrix}3& -2& 4\\-2& 6& 2\\4& 2& 3 \end{bmatrix}$$

B=np.array([[3,-2,4],[-2,6,2],[4,2,3]])
la.det(B).round(3)
-98.0

대칭행렬 B는 가역적입니다.

d,P=la.eig(B)
print(d)
[ 7. -2.  7.]

위 결과와 같이 두개의 고유값이 같으므로 행렬 B의 열차원과 고유값의 수에서 차이가 납니다. 이는 가역적 대칭행렬의 특성(식 2)에 위배되므로 식 7은 성립하지 않습니다.

D=np.diag(d)
np.allclose(B, P@D@la.inv(P))
True
np.allclose(B, P@D@P.T)
False

즉, 대각화가 이루어지지 않으며 고유행렬은 직교행렬이 아닙니다.

for i, j in itertools.combinations(range(3), 2):
    print("%d와 %d 열벡터의 내적: %.3f" %(i+1, j+1, P[:, i]@P[:,j]))
1와 2 열벡터의 내적: -0.000
1와 3 열벡터의 내적: -0.111
2와 3 열벡터의 내적: 0.000

위 결과와 같이 고유벡터 P1과 P3는 직교관계가 성립하지 않습니다. 그러므로 PT = P-1의 관계가 성립하지 않습니다. 이 관계를 성립시키기 위해 P[:,0]과 P[:,2] 벡터 사이의 직교벡터들로 고유행렬을 대체할 수 있습니다.

Gram-Schmit 과정으로 그 직교벡터들을 계산할 수 있지만 이 결과는 QR 분해의 Q와 같습니다. linalg.qr()함수를 적용하여 정규직교벡터들을 계산하면 다음과 같습니다.

Q,R=la.qr(P[:,[0,2]])
print(Q.round(3))
[[-0.745  0.   ]
 [ 0.298 -0.894]
 [-0.596 -0.447]]

위 결과들을 P[:,0]과 P[:,1]을 대체하여 새로운 고유행렬(P2)을 생성합니다.

P2=np.c_[Q[:,1],P[:,1], Q[:,0]]
print(P2.round(3))
[[ 0.    -0.667 -0.745]
 [-0.894 -0.333  0.298]
 [-0.447  0.667 -0.596]]

행렬 P2는 대칭행렬의 직교성을 확보합니다. 즉, P2T = P2-1관계가 성립합니다.

np.allclose(P2.T, la.inv(P2))
True

그러므로 식 5.3.5가 성립합니다.

np.allclose(B, P2@D@la.inv(P2))
True
np.allclose(B, P2@D@P2.T)
True

댓글

이 블로그의 인기 게시물

[Linear Algebra] 유사변환(Similarity transformation)

유사변환(Similarity transformation) n×n 차원의 정방 행렬 A, B 그리고 가역 행렬 P 사이에 식 1의 관계가 성립하면 행렬 A와 B는 유사행렬(similarity matrix)이 되며 행렬 A를 가역행렬 P와 B로 분해하는 것을 유사 변환(similarity transformation) 이라고 합니다. $$\tag{1} A = PBP^{-1} \Leftrightarrow P^{-1}AP = B $$ 식 2는 식 1의 양변에 B의 고유값을 고려한 것입니다. \begin{align}\tag{식 2} B - \lambda I &= P^{-1}AP – \lambda P^{-1}P\\ &= P^{-1}(AP – \lambda P)\\ &= P^{-1}(A - \lambda I)P \end{align} 식 2의 행렬식은 식 3과 같이 정리됩니다. \begin{align} &\begin{aligned}\textsf{det}(B - \lambda I ) & = \textsf{det}(P^{-1}(AP – \lambda P))\\ &= \textsf{det}(P^{-1}) \textsf{det}((A – \lambda I)) \textsf{det}(P)\\ &= \textsf{det}(P^{-1}) \textsf{det}(P) \textsf{det}((A – \lambda I))\\ &= \textsf{det}(A – \lambda I)\end{aligned}\\ &\begin{aligned}\because \; \textsf{det}(P^{-1}) \textsf{det}(P) &= \textsf{det}(P^{-1}P)\\ &= \textsf{det}(I)\end{aligned}\end{align} 유사행렬의 특성 유사행렬인 두 정방행렬 A와 B는 'A ~ B' 와 같...

[sympy] Sympy객체의 표현을 위한 함수들

Sympy객체의 표현을 위한 함수들 General simplify(x): 식 x(sympy 객체)를 간단히 정리 합니다. import numpy as np from sympy import * x=symbols("x") a=sin(x)**2+cos(x)**2 a $\sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}$ simplify(a) 1 simplify(b) $\frac{x^{3} + x^{2} - x - 1}{x^{2} + 2 x + 1}$ simplify(b) x - 1 c=gamma(x)/gamma(x-2) c $\frac{\Gamma\left(x\right)}{\Gamma\left(x - 2\right)}$ simplify(c) $\displaystyle \left(x - 2\right) \left(x - 1\right)$ 위의 예들 중 객체 c의 감마함수(gamma(x))는 확률분포 등 여러 부분에서 사용되는 표현식으로 다음과 같이 정의 됩니다. 감마함수는 음이 아닌 정수를 제외한 모든 수에서 정의됩니다. 식 1과 같이 자연수에서 감마함수는 factorial(!), 부동소수(양의 실수)인 경우 적분을 적용하여 계산합니다. $$\tag{식 1}\Gamma(n) =\begin{cases}(n-1)!& n:\text{자연수}\\\int^\infty_0x^{n-1}e^{-x}\,dx& n:\text{부동소수}\end{cases}$$ x=symbols('x') gamma(x).subs(x,4) $\displaystyle 6$ factorial 계산은 math.factorial() 함수를 사용할 수 있습니다. import math math.factorial(3) 6 a=gamma(x).subs(x,4.5) a.evalf(3) 11.6 simpilfy() 함수의 알고리즘은 식에서 공통사항을 찾아 정리하...

sympy.solvers로 방정식해 구하기

sympy.solvers로 방정식해 구하기 대수 방정식을 해를 계산하기 위해 다음 함수를 사용합니다. sympy.solvers.solve(f, *symbols, **flags) f=0, 즉 동차방정식에 대해 지정한 변수의 해를 계산 f : 식 또는 함수 symbols: 식의 해를 계산하기 위한 변수, 변수가 하나인 경우는 생략가능(자동으로 인식) flags: 계산 또는 결과의 방식을 지정하기 위한 인수들 dict=True: {x:3, y:1}같이 사전형식, 기본값 = False set=True :{(x,3),(y,1)}같이 집합형식, 기본값 = False ratioal=True : 실수를 유리수로 반환, 기본값 = False positive=True: 해들 중에 양수만을 반환, 기본값 = False 예 $x^2=1$의 해를 결정합니다. solve() 함수에 적용하기 위해서는 다음과 같이 식의 한쪽이 0이 되는 형태인 동차식으로 구성되어야 합니다. $$x^2-1=0$$ import numpy as np from sympy import * x = symbols('x') solve(x**2-1, x) [-1, 1] 위 식은 계산 과정은 다음과 같습니다. $$\begin{aligned}x^2-1=0 \rightarrow (x+1)(x-1)=0 \\ x=1 \; \text{or}\; -1\end{aligned}$$ 예 $x^4=1$의 해를 결정합니다. solve() 함수의 인수 set=True를 지정하였으므로 결과는 집합(set)형으로 반환됩니다. eq=x**4-1 solve(eq, set=True) ([x], {(-1,), (-I,), (1,), (I,)}) 위의 경우 I는 복소수입니다.즉 위 결과의 과정은 다음과 같습니다. $$x^4-1=(x^2+1)(x+1)(x-1)=0 \rightarrow x=\pm \sqrt{-1}, \; \pm 1=\pm i,\; \pm1$$ 실수...