기본 콘텐츠로 건너뛰기

[ML] 결정트리(Decision Tree) 모델

[data analysis] t 분포(Student's t distribution)

t분포(Student's t distribution)

정규분포 N(μ, σ2)을 따르는 모집단으로부터 n개의 샘플들(x1, x2, ..., xn)을 추출하면 정규화된 샘플들의 제곱의 합은 자유도가 n-1인 χ2분포를 따릅니다(식 1).

\begin{align}X&=(x_1,\,x_2,\,\cdots,\, x_n)\\S^2&=\frac{1}{n-1}\sum^n_{i=1}(x_i-\bar{x})^2\\ (n-1)S^2 &= \sum^n_{i=1}(x_i - \bar{x})^2\\ \frac{(n-1)S^2}{\sigma^2}&= \sum^n_{i=1}\frac{(x_i - \bar{x})^2}{\sigma^2}\\&=\sum^n_{i=1}z_i^2\\&= z_1^2 +z_2^2+ \cdots +z_n^2 \end{align} (식 1)

식 3.2.43의 마지막 항의 각각 정규화된 값의 제곱은 χ2(1)(카이제곱 분포 참조)을 따르므로 $\frac{(n-1)S^2}{\sigma^2}$는 χ2(n)를 따릅니다. 그러므로 표준정규분포를 따르는 확률변수 Z과 자유도 k(= n)에 대한 카이제곱분포의 비의 결과를 새로운 확률변수 T로 정의할 수 있습니다 (식 2).

$$T_k =\frac{Z}{\sqrt{\frac{\chi^2_k}{k}}}$$ (식 2)

식 2에서 Z은 표준정규분포를 따르는 확률변수이고 χ2k는 자유도 k인 카이제곱분포를 따르는 확률변수로 $\frac{(n-1)S^2}{\sigma^2}$을 의미합니다. k는 자유도입니다. 이 결과인 확률변수 T는 자유도가 k인 t 분포를 따릅니다.

식 2에 의해 생성되는 확률변수 T의 분포인 t 분포의 확률밀도 함수(pdf)는 식 3로 정의합니다.

\begin{align}f(x,\,k)&=\frac{\Gamma\left(\frac{k+1}{2}\right)}{\sqrt{\pi k}\Gamma\left(\frac{k}{2}\right)}\left(1+\frac{x^2}{k}\right)^{-\frac{k+1}{2}} \\& x: \;\text{확률변수} \\& k: \;\text{자유도} \\& Γ: \;\text{감마함수}\end{align} (식 3)

식 3과 같이 t 분포 함수의 모수는 자유도 k로서 t 분포는 t(k)와 같이 나타냅니다.

그림 1은 자유도에 따른 t분포의 변화된 형태입니다.

그림 1. t분포에서 자유도의 영향.
x=np.linspace(-3, 3, 1000)
k=[1, 5, 10]
col=['g','b','r']
fig, ax=plt.subplots(figsize=(4,3))
ax.plot(x, stats.norm.pdf(x), label="N(0, 1)")
for i, j in zip(k, col):
    ax.plot(x, stats.t.pdf(x, i), color=j, label=f"t({i})")
ax.set_xlabel("x", loc="right")
ax.set_ylabel("pdf", loc="top")
ax.legend(loc='best', frameon=False)
plt.show()

그림 1에서 나타낸 것과 같이 t분포는 표준정규분포와 같이 좌우대칭입니다. 그러나 자유도가 증가할수록 분포의 높이가 낮아지며 꼬리부분의 두터워집니다. 일반적으로 표본의 크기가 30 이상이면 표준정규분포에 근접합니다. 반대로 표본의 크기가 30이하이면 정규분포보다는 t-분포의 사용이 적절함을 의미합니다. 표본의 크기가 작으면 신뢰도가 낮아지므로 정규분포보다 추정구간이 넓은 t분포의 적용이 더 바람직합니다.

t 분포는 scipy.stats.t()클래스를 사용합니다.

예 1)

P(t2 ≤ 1.5)을 계산합니다.

round(stats.t. cdf(1.5, 2), 3)
0.864

댓글

이 블로그의 인기 게시물

[Linear Algebra] 유사변환(Similarity transformation)

유사변환(Similarity transformation) n×n 차원의 정방 행렬 A, B 그리고 가역 행렬 P 사이에 식 1의 관계가 성립하면 행렬 A와 B는 유사행렬(similarity matrix)이 되며 행렬 A를 가역행렬 P와 B로 분해하는 것을 유사 변환(similarity transformation) 이라고 합니다. $$\tag{1} A = PBP^{-1} \Leftrightarrow P^{-1}AP = B $$ 식 2는 식 1의 양변에 B의 고유값을 고려한 것입니다. \begin{align}\tag{식 2} B - \lambda I &= P^{-1}AP – \lambda P^{-1}P\\ &= P^{-1}(AP – \lambda P)\\ &= P^{-1}(A - \lambda I)P \end{align} 식 2의 행렬식은 식 3과 같이 정리됩니다. \begin{align} &\begin{aligned}\textsf{det}(B - \lambda I ) & = \textsf{det}(P^{-1}(AP – \lambda P))\\ &= \textsf{det}(P^{-1}) \textsf{det}((A – \lambda I)) \textsf{det}(P)\\ &= \textsf{det}(P^{-1}) \textsf{det}(P) \textsf{det}((A – \lambda I))\\ &= \textsf{det}(A – \lambda I)\end{aligned}\\ &\begin{aligned}\because \; \textsf{det}(P^{-1}) \textsf{det}(P) &= \textsf{det}(P^{-1}P)\\ &= \textsf{det}(I)\end{aligned}\end{align} 유사행렬의 특성 유사행렬인 두 정방행렬 A와 B는 'A ~ B' 와 같

[matplotlib] 히스토그램(Histogram)

히스토그램(Histogram) 히스토그램은 확률분포의 그래픽적인 표현이며 막대그래프의 종류입니다. 이 그래프가 확률분포와 관계가 있으므로 통계적 요소를 나타내기 위해 많이 사용됩니다. plt.hist(X, bins=10)함수를 사용합니다. x=np.random.randn(1000) plt.hist(x, 10) plt.show() 위 그래프의 y축은 각 구간에 해당하는 갯수이다. 빈도수 대신 확률밀도를 나타내기 위해서는 위 함수의 매개변수 normed=True로 조정하여 나타낼 수 있다. 또한 매개변수 bins의 인수를 숫자로 전달할 수 있지만 리스트 객체로 지정할 수 있다. 막대그래프의 경우와 마찬가지로 각 막대의 폭은 매개변수 width에 의해 조정된다. y=np.linspace(min(x)-1, max(x)+1, 10) y array([-4.48810153, -3.54351935, -2.59893717, -1.65435499, -0.70977282, 0.23480936, 1.17939154, 2.12397372, 3.0685559 , 4.01313807]) plt.hist(x, y, normed=True) plt.show()

R 미분과 적분

내용 expression 미분 2차 미분 mosaic를 사용한 미분 적분 미분과 적분 R에서의 미분과 적분 함수는 expression()함수에 의해 생성된 표현식을 대상으로 합니다. expression expression(문자, 또는 식) 이 표현식의 평가는 eval() 함수에 의해 실행됩니다. > ex1<-expression(1+0:9) > ex1 expression(1 + 0:9) > eval(ex1) [1] 1 2 3 4 5 6 7 8 9 10 > ex2<-expression(u, 2, u+0:9) > ex2 expression(u, 2, u + 0:9) > ex2[1] expression(u) > ex2[2] expression(2) > ex2[3] expression(u + 0:9) > u<-0.9 > eval(ex2[3]) [1] 0.9 1.9 2.9 3.9 4.9 5.9 6.9 7.9 8.9 9.9 미분 D(표현식, 미분 변수) 함수로 미분을 실행합니다. 이 함수의 표현식은 expression() 함수로 생성된 객체이며 미분 변수는 다음 식의 분모의 변수를 의미합니다. $$\frac{d}{d \text{변수}}\text{표현식}$$ 이 함수는 어떤 함수의 미분의 결과를 표현식으로 반환합니다. > D(expression(2*x^3), "x") 2 * (3 * x^2) > eq<-expression(log(x)) > eq expression(log(x)) > D(eq, "x") 1/x > eq2<-expression(a/(1+b*exp(-d*x))); eq2 expression(a/(1 + b * exp(-d * x))) > D(eq2, "x") a * (b * (exp(-d * x) * d))/(1 + b