기본 콘텐츠로 건너뛰기

[matplotlib] 등고선(Contour)

[data analysis] Fligner 검정

Fligner 검정

관련된 내용

데이터의 정규성을 파악할 수 없는 경우 비모수 방법인 Fligner 검정으로 등분산성을 검정할 수 있습니다. Fligner-Killeen 중앙값 검정은 정규성에서 벗어나는 자료들에 대해 분산의 동질성에 대한 검정입니다(Conover et al.(1981), [CON1]). 즉, 데이터의 순위를 이용하여 검정하는 것으로 검정통계량은 식 1과 같이 정의됩니다.

FK=j=1knj(aj¯a¯)s2k:비교할 그룹(변수)의 수aj¯:j 그룹의 표준점수의 평균a¯:모든 표준점수의 평균s2:모든 표준점수의 분산(식 1)

식 1의 FK 검정통계량은 자유도 k-1의 χ2 분포를 따릅니다. 즉, 표준정규분포에 부합하는 각 변수들의 제곱에 대한 분포를 따른다면 분산은 같습니다. 그러므로 이 분석의 귀무가설과 대립가설은 다음과 같습니다.

귀무가설(H0): 집단들의 분산이 같다.
대립가설(Ha): 최소한 두 집단간의 분산이 다르다.

stats.fligner() 함수를 사용합니다.

예 1)

일정기간의 코스피지수, 코스탁지수, 다우존스지수, 원-달러 환율의 일일 종가의 변화율 자료들의 Fligner 등분산성 검정을 실시합니다.

kos kq dj WonDol
1 0.016 0.008 0.006 0.002
2 -0.007 -0.004 0.014 -0.000
3 0.021 0.008 0.007 0.000
4 0.040 -0.001 0.002 0.006
5 -0.001 -0.011 -0.003 -0.000

이 자료는 다음 코드에 의해 호출하고 계산합니다.

st=pd.Timestamp(2021,1, 1)
et=pd.Timestamp(2024, 5, 30)
code=["KS11", "KQ11", "DJI", "USD/KRW"]
nme=['kos','kq','dj','WonDol']
da=pd.DataFrame()
for i in code:
    x=fdr.DataReader(i,st, et)['Close']
    x1=x.pct_change()
    da=pd.concat([da, x1], axis=1)
da.columns=nme
da.index=range(len(da))
da1=da.dropna()
st, pV=stats.fligner(da1['kos'], da1['kq'], da1['dj'], da1['WonDol'])
print(f'통계량: {round(st, 3)}, p-value: {round(pV, 3)}')
통계량: 335.333, p-value: 0.0

위 결과의 매우 낮은 유의확률은 귀무가설을 기각할 수 있음을 나타냅니다. 즉, 4개 그룹에 대한 등분산성을 가정할 수 없습니다.

댓글

이 블로그의 인기 게시물

[Linear Algebra] 유사변환(Similarity transformation)

유사변환(Similarity transformation) n×n 차원의 정방 행렬 A, B 그리고 가역 행렬 P 사이에 식 1의 관계가 성립하면 행렬 A와 B는 유사행렬(similarity matrix)이 되며 행렬 A를 가역행렬 P와 B로 분해하는 것을 유사 변환(similarity transformation) 이라고 합니다. (1)A=PBP1P1AP=B 식 2는 식 1의 양변에 B의 고유값을 고려한 것입니다. (식 2)BλI=P1APλP1P=P1(APλP)=P1(AλI)P 식 2의 행렬식은 식 3과 같이 정리됩니다. det(BλI)=det(P1(APλP))=det(P1)det((AλI))det(P)=det(P1)det(P)det((AλI))=det(AλI)det(P1)det(P)=det(P1P)=det(I) 유사행렬의 특성 유사행렬인 두 정방행렬 A와 B는 'A ~ B' 와 같...

[sympy] Sympy객체의 표현을 위한 함수들

Sympy객체의 표현을 위한 함수들 General simplify(x): 식 x(sympy 객체)를 간단히 정리 합니다. import numpy as np from sympy import * x=symbols("x") a=sin(x)**2+cos(x)**2 a sin2(x)+cos2(x) simplify(a) 1 simplify(b) x3+x2x1x2+2x+1 simplify(b) x - 1 c=gamma(x)/gamma(x-2) c Γ(x)Γ(x2) simplify(c) (x2)(x1) 위의 예들 중 객체 c의 감마함수(gamma(x))는 확률분포 등 여러 부분에서 사용되는 표현식으로 다음과 같이 정의 됩니다. 감마함수는 음이 아닌 정수를 제외한 모든 수에서 정의됩니다. 식 1과 같이 자연수에서 감마함수는 factorial(!), 부동소수(양의 실수)인 경우 적분을 적용하여 계산합니다. (식 1)Γ(n)={(n1)!n:자연수0xn1exdxn:부동소수 x=symbols('x') gamma(x).subs(x,4) 6 factorial 계산은 math.factorial() 함수를 사용할 수 있습니다. import math math.factorial(3) 6 a=gamma(x).subs(x,4.5) a.evalf(3) 11.6 simpilfy() 함수의 알고리즘은 식에서 공통사항을 찾아 정리하...

sympy.solvers로 방정식해 구하기

sympy.solvers로 방정식해 구하기 대수 방정식을 해를 계산하기 위해 다음 함수를 사용합니다. sympy.solvers.solve(f, *symbols, **flags) f=0, 즉 동차방정식에 대해 지정한 변수의 해를 계산 f : 식 또는 함수 symbols: 식의 해를 계산하기 위한 변수, 변수가 하나인 경우는 생략가능(자동으로 인식) flags: 계산 또는 결과의 방식을 지정하기 위한 인수들 dict=True: {x:3, y:1}같이 사전형식, 기본값 = False set=True :{(x,3),(y,1)}같이 집합형식, 기본값 = False ratioal=True : 실수를 유리수로 반환, 기본값 = False positive=True: 해들 중에 양수만을 반환, 기본값 = False 예 x2=1의 해를 결정합니다. solve() 함수에 적용하기 위해서는 다음과 같이 식의 한쪽이 0이 되는 형태인 동차식으로 구성되어야 합니다. x21=0 import numpy as np from sympy import * x = symbols('x') solve(x**2-1, x) [-1, 1] 위 식은 계산 과정은 다음과 같습니다. x21=0(x+1)(x1)=0x=1or1x4=1의 해를 결정합니다. solve() 함수의 인수 set=True를 지정하였으므로 결과는 집합(set)형으로 반환됩니다. eq=x**4-1 solve(eq, set=True) ([x], {(-1,), (-I,), (1,), (I,)}) 위의 경우 I는 복소수입니다.즉 위 결과의 과정은 다음과 같습니다. x41=(x2+1)(x+1)(x1)=0x=±1,±1=±i,±1 실수...