기본 콘텐츠로 건너뛰기

벡터와 행렬에 관련된 그림들

[python] 자료형(type)의 분류

자료형(type)

컴퓨터에 입력되는 데이터 즉, 리터럴(literal, raw data)은 0과 1로 변환되어 메모리에 저장되기 때문에 데이터의 종류를 구분할 수 없습니다. 그러므로 입력된 데이터가 0과 1 변환되기 전에 문자인지 숫자인지를 지정할 필요가 있습니다.

메모리 입력되는 원시데이터로 자신을 참조하는 객체를 이미합니다.

C, JAVA, Kotlin등과 같은 언어는 자료를 선언하는 단계에서 그 타입을 명시적으로 지정해야 하지만 파이썬의 경우는 자료형의 선언이 암묵적으로 이루어집니다. 그러나 동일한 자료형내에서만 연산이 이루어지므로 표 1에 제시된 자료형의 분류를 인지하고 있어야 합니다. 파이썬은 기본적으로 숫자형과 문자형으로 구분하며 리터럴의 1개 이상의 자료를 그룹화하기 위한 컬렉션(collection)(컬렉션 참조)을 가집니다.

표 1 자료형의 분류
분류 자료형
기본형 숫자형 int(정수형) -13, 0, 231
float(실수형) -2.31, 0.98, 2.31E2
complex(복소수형) 0.+3j, 1+0j
문자형 String(문자열) 'a', "string'
복합형
(Collections)
list [1, 3, 'a', 'string']
tuple (1, 3, 'a', 'string')
dictionary {"one": 1, "cha":'a', "str":'string'}
set {1, 2, 3}

표 1의 각 자료형은 클래스(class)로 작성되었습니다. 파이썬에서 객체를 생성할 때 자동적으로 부여되는 속성들이 있습니다. 이 속성 중에 __class__은 그 객체가 소속되는 클래스를 반환합니다. 다음 코드들은 숫자와 문자 그리고 컬렉션인 리스트 객체들이 소속된 클래스를 확인하기 위해 이 속성을 사용한 것입니다.

x=1
x.__class__
int
y="string"
y.__class__
str
z=[1, 3, 'a', 'string']
z.__class__
list

클래스(class)는 데이터의 상태와 변화의 범위를 고유하게 만들기 위해 사용합니다. 그러므로 특정한 클래스로 생성된 객체는 다른 클래스로 생성된 것과 구별됩니다. 다시 말하면 각 자료형의 클래스가 다르다는 것은 그것의 특성과 동작이 고유하다는 것을 의미합니다(클래스 참조).

댓글

이 블로그의 인기 게시물

[Linear Algebra] 유사변환(Similarity transformation)

유사변환(Similarity transformation) n×n 차원의 정방 행렬 A, B 그리고 가역 행렬 P 사이에 식 1의 관계가 성립하면 행렬 A와 B는 유사행렬(similarity matrix)이 되며 행렬 A를 가역행렬 P와 B로 분해하는 것을 유사 변환(similarity transformation) 이라고 합니다. $$\tag{1} A = PBP^{-1} \Leftrightarrow P^{-1}AP = B $$ 식 2는 식 1의 양변에 B의 고유값을 고려한 것입니다. \begin{align}\tag{식 2} B - \lambda I &= P^{-1}AP – \lambda P^{-1}P\\ &= P^{-1}(AP – \lambda P)\\ &= P^{-1}(A - \lambda I)P \end{align} 식 2의 행렬식은 식 3과 같이 정리됩니다. \begin{align} &\begin{aligned}\textsf{det}(B - \lambda I ) & = \textsf{det}(P^{-1}(AP – \lambda P))\\ &= \textsf{det}(P^{-1}) \textsf{det}((A – \lambda I)) \textsf{det}(P)\\ &= \textsf{det}(P^{-1}) \textsf{det}(P) \textsf{det}((A – \lambda I))\\ &= \textsf{det}(A – \lambda I)\end{aligned}\\ &\begin{aligned}\because \; \textsf{det}(P^{-1}) \textsf{det}(P) &= \textsf{det}(P^{-1}P)\\ &= \textsf{det}(I)\end{aligned}\end{align} 유사행렬의 특성 유사행렬인 두 정방행렬 A와 B는 'A ~ B' 와 같...

[sympy] Sympy객체의 표현을 위한 함수들

Sympy객체의 표현을 위한 함수들 General simplify(x): 식 x(sympy 객체)를 간단히 정리 합니다. import numpy as np from sympy import * x=symbols("x") a=sin(x)**2+cos(x)**2 a $\sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}$ simplify(a) 1 simplify(b) $\frac{x^{3} + x^{2} - x - 1}{x^{2} + 2 x + 1}$ simplify(b) x - 1 c=gamma(x)/gamma(x-2) c $\frac{\Gamma\left(x\right)}{\Gamma\left(x - 2\right)}$ simplify(c) $\displaystyle \left(x - 2\right) \left(x - 1\right)$ 위의 예들 중 객체 c의 감마함수(gamma(x))는 확률분포 등 여러 부분에서 사용되는 표현식으로 다음과 같이 정의 됩니다. 감마함수는 음이 아닌 정수를 제외한 모든 수에서 정의됩니다. 식 1과 같이 자연수에서 감마함수는 factorial(!), 부동소수(양의 실수)인 경우 적분을 적용하여 계산합니다. $$\tag{식 1}\Gamma(n) =\begin{cases}(n-1)!& n:\text{자연수}\\\int^\infty_0x^{n-1}e^{-x}\,dx& n:\text{부동소수}\end{cases}$$ x=symbols('x') gamma(x).subs(x,4) $\displaystyle 6$ factorial 계산은 math.factorial() 함수를 사용할 수 있습니다. import math math.factorial(3) 6 a=gamma(x).subs(x,4.5) a.evalf(3) 11.6 simpilfy() 함수의 알고리즘은 식에서 공통사항을 찾아 정리하...

sympy.solvers로 방정식해 구하기

sympy.solvers로 방정식해 구하기 대수 방정식을 해를 계산하기 위해 다음 함수를 사용합니다. sympy.solvers.solve(f, *symbols, **flags) f=0, 즉 동차방정식에 대해 지정한 변수의 해를 계산 f : 식 또는 함수 symbols: 식의 해를 계산하기 위한 변수, 변수가 하나인 경우는 생략가능(자동으로 인식) flags: 계산 또는 결과의 방식을 지정하기 위한 인수들 dict=True: {x:3, y:1}같이 사전형식, 기본값 = False set=True :{(x,3),(y,1)}같이 집합형식, 기본값 = False ratioal=True : 실수를 유리수로 반환, 기본값 = False positive=True: 해들 중에 양수만을 반환, 기본값 = False 예 $x^2=1$의 해를 결정합니다. solve() 함수에 적용하기 위해서는 다음과 같이 식의 한쪽이 0이 되는 형태인 동차식으로 구성되어야 합니다. $$x^2-1=0$$ import numpy as np from sympy import * x = symbols('x') solve(x**2-1, x) [-1, 1] 위 식은 계산 과정은 다음과 같습니다. $$\begin{aligned}x^2-1=0 \rightarrow (x+1)(x-1)=0 \\ x=1 \; \text{or}\; -1\end{aligned}$$ 예 $x^4=1$의 해를 결정합니다. solve() 함수의 인수 set=True를 지정하였으므로 결과는 집합(set)형으로 반환됩니다. eq=x**4-1 solve(eq, set=True) ([x], {(-1,), (-I,), (1,), (I,)}) 위의 경우 I는 복소수입니다.즉 위 결과의 과정은 다음과 같습니다. $$x^4-1=(x^2+1)(x+1)(x-1)=0 \rightarrow x=\pm \sqrt{-1}, \; \pm 1=\pm i,\; \pm1$$ 실수...