기본 콘텐츠로 건너뛰기

pandas_ta를 적용한 통계적 인덱스 지표

[python] 자료형(type)의 분류

자료형(type)

컴퓨터에 입력되는 데이터 즉, 리터럴(literal, raw data)은 0과 1로 변환되어 메모리에 저장되기 때문에 데이터의 종류를 구분할 수 없습니다. 그러므로 입력된 데이터가 0과 1 변환되기 전에 문자인지 숫자인지를 지정할 필요가 있습니다.

메모리 입력되는 원시데이터로 자신을 참조하는 객체를 이미합니다.

C, JAVA, Kotlin등과 같은 언어는 자료를 선언하는 단계에서 그 타입을 명시적으로 지정해야 하지만 파이썬의 경우는 자료형의 선언이 암묵적으로 이루어집니다. 그러나 동일한 자료형내에서만 연산이 이루어지므로 표 1에 제시된 자료형의 분류를 인지하고 있어야 합니다. 파이썬은 기본적으로 숫자형과 문자형으로 구분하며 리터럴의 1개 이상의 자료를 그룹화하기 위한 컬렉션(collection)(컬렉션 참조)을 가집니다.

표 1 자료형의 분류
분류 자료형
기본형 숫자형 int(정수형) -13, 0, 231
float(실수형) -2.31, 0.98, 2.31E2
complex(복소수형) 0.+3j, 1+0j
문자형 String(문자열) 'a', "string'
복합형
(Collections)
list [1, 3, 'a', 'string']
tuple (1, 3, 'a', 'string')
dictionary {"one": 1, "cha":'a', "str":'string'}
set {1, 2, 3}

표 1의 각 자료형은 클래스(class)로 작성되었습니다. 파이썬에서 객체를 생성할 때 자동적으로 부여되는 속성들이 있습니다. 이 속성 중에 __class__은 그 객체가 소속되는 클래스를 반환합니다. 다음 코드들은 숫자와 문자 그리고 컬렉션인 리스트 객체들이 소속된 클래스를 확인하기 위해 이 속성을 사용한 것입니다.

x=1
x.__class__
int
y="string"
y.__class__
str
z=[1, 3, 'a', 'string']
z.__class__
list

클래스(class)는 데이터의 상태와 변화의 범위를 고유하게 만들기 위해 사용합니다. 그러므로 특정한 클래스로 생성된 객체는 다른 클래스로 생성된 것과 구별됩니다. 다시 말하면 각 자료형의 클래스가 다르다는 것은 그것의 특성과 동작이 고유하다는 것을 의미합니다(클래스 참조).

댓글

이 블로그의 인기 게시물

[Linear Algebra] 유사변환(Similarity transformation)

유사변환(Similarity transformation) n×n 차원의 정방 행렬 A, B 그리고 가역 행렬 P 사이에 식 1의 관계가 성립하면 행렬 A와 B는 유사행렬(similarity matrix)이 되며 행렬 A를 가역행렬 P와 B로 분해하는 것을 유사 변환(similarity transformation) 이라고 합니다. $$\tag{1} A = PBP^{-1} \Leftrightarrow P^{-1}AP = B $$ 식 2는 식 1의 양변에 B의 고유값을 고려한 것입니다. \begin{align}\tag{식 2} B - \lambda I &= P^{-1}AP – \lambda P^{-1}P\\ &= P^{-1}(AP – \lambda P)\\ &= P^{-1}(A - \lambda I)P \end{align} 식 2의 행렬식은 식 3과 같이 정리됩니다. \begin{align} &\begin{aligned}\textsf{det}(B - \lambda I ) & = \textsf{det}(P^{-1}(AP – \lambda P))\\ &= \textsf{det}(P^{-1}) \textsf{det}((A – \lambda I)) \textsf{det}(P)\\ &= \textsf{det}(P^{-1}) \textsf{det}(P) \textsf{det}((A – \lambda I))\\ &= \textsf{det}(A – \lambda I)\end{aligned}\\ &\begin{aligned}\because \; \textsf{det}(P^{-1}) \textsf{det}(P) &= \textsf{det}(P^{-1}P)\\ &= \textsf{det}(I)\end{aligned}\end{align} 유사행렬의 특성 유사행렬인 두 정방행렬 A와 B는 'A ~ B' 와 같...

[sympy] Sympy객체의 표현을 위한 함수들

Sympy객체의 표현을 위한 함수들 General simplify(x): 식 x(sympy 객체)를 간단히 정리 합니다. import numpy as np from sympy import * x=symbols("x") a=sin(x)**2+cos(x)**2 a $\sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}$ simplify(a) 1 simplify(b) $\frac{x^{3} + x^{2} - x - 1}{x^{2} + 2 x + 1}$ simplify(b) x - 1 c=gamma(x)/gamma(x-2) c $\frac{\Gamma\left(x\right)}{\Gamma\left(x - 2\right)}$ simplify(c) $\displaystyle \left(x - 2\right) \left(x - 1\right)$ 위의 예들 중 객체 c의 감마함수(gamma(x))는 확률분포 등 여러 부분에서 사용되는 표현식으로 다음과 같이 정의 됩니다. 감마함수는 음이 아닌 정수를 제외한 모든 수에서 정의됩니다. 식 1과 같이 자연수에서 감마함수는 factorial(!), 부동소수(양의 실수)인 경우 적분을 적용하여 계산합니다. $$\tag{식 1}\Gamma(n) =\begin{cases}(n-1)!& n:\text{자연수}\\\int^\infty_0x^{n-1}e^{-x}\,dx& n:\text{부동소수}\end{cases}$$ x=symbols('x') gamma(x).subs(x,4) $\displaystyle 6$ factorial 계산은 math.factorial() 함수를 사용할 수 있습니다. import math math.factorial(3) 6 a=gamma(x).subs(x,4.5) a.evalf(3) 11.6 simpilfy() 함수의 알고리즘은 식에서 공통사항을 찾아 정리하...

유리함수 그래프와 점근선 그리기

내용 유리함수(Rational Function) 점근선(asymptote) 유리함수 그래프와 점근선 그리기 유리함수(Rational Function) 유리함수는 분수형태의 함수를 의미합니다. 예를들어 다음 함수는 분수형태의 유리함수입니다. $$f(x)=\frac{x^{2} - 1}{x^{2} + x - 6}$$ 분수의 경우 분모가 0인 경우 정의할 수 없습니다. 이와 마찬가지로 유리함수 f(x)의 정의역은 분모가 0이 아닌 부분이어야 합니다. 그러므로 위함수의 정의역은 분모가 0인 부분을 제외한 부분들로 구성됩니다. sympt=solve(denom(f), a); asympt [-3, 2] $$-\infty \lt x \lt -3, \quad -3 \lt x \lt 2, \quad 2 \lt x \lt \infty$$ 이 정의역을 고려해 그래프를 작성을 위한 사용자 정의함수는 다음과 같습니다. def validX(x, f, symbol): ① a=[] b=[] for i in x: try: b.append(float(f.subs(symbol, i))) a.append(i) except: pass return(a, b) #x는 임의로 지정한 정의역으로 불연속선점을 기준으로 구분된 몇개의 구간으로 전달할 수 있습니다. #그러므로 인수 x는 2차원이어야 합니다. def RationalPlot(x, f, sym, dp=100): fig, ax=plt.subplots(dpi=dp) # ② for k in x: #③ x4, y4=validX(k, f, sym) ax.plot(x4, y4) ax.spines['left'].set_position(('data', 0)) ax.spines['right...