기본 콘텐츠로 건너뛰기

벡터와 행렬에 관련된 그림들

[data analysis] 변동: 범위(Range)

변동(Variation)

관련내용

범위(range)

데이터 셋의 범위를 의미합니다. 식 1과 같이 그 범위는 최대값과 최소값의 차이를 나타냅니다.

범위 = 최대값 - 최소값 (식 1)

이 값은 numpy 함수인 max()min()을 사용하여 데이터 셋의 최대와 최소값을 결정한 후 두 값의 차이로 계산할 수 있습니다. 다음은 [1, 100) 사이에 랜덤수 50개를 추출한 후 그 범위를 산출한 것입니다.

  • np.max(x, axis=None)
    • 배열 객체 x에서 지정한 축에 따라 최대값을 반환
    • axis: None일 경우 1차원 벡터로 자동 변환 후 최대값 반환
    • array.max(axis), pd객체.max(axis)와 같음
  • np.min(x, axis=None)
    • 배열 객체 x에서 지정한 축에 따라 최소값을 반환
    • axis: None일 경우 1차원 벡터로 자동 변환후 최소값 반환
    • array.min(axis), pd객체.min(axis)과 같음
np.random.seed(1)
d=np.random.randint(1, 100, 5)
d_max, d_min=np.max(d), np.min(d)
d_max, d_min
(76, 10)
rng=d_max-d_min; rng
66

예)

다음 데이터들의 범위를 계산합니다.

A = {4, 6, 2, 4, 6, −4, −7, 45}
B = {4, 6, 2, 4, 6, −4, −7, 145}
A 의 범위 = 45 - (-7) = 52
B의 범위 = 145 - (-7) = 152

위 예에서 두 그룹 A와 B는 하나의 값을 제외하고 같습니다. 그러나 B의 최대값은 다른 값에 비해 현저한 차이를 보이는 이상치로 간주할 수 있으며 그 값으로 인해 두 그룹의 범위는 매우 큰 차이를 보입니다. 즉, 범위는 간편하게 산출되는 결과이지만 이상치(outlier)에 매우 민감 합니다.

이상치는 자료중에 다른 값들에 비해 현저한 변화를 보이는 값(들)로 사분위범위(Interquartile Range, IQR)를 기준으로 발견합니다. 이외에도 다양한 방법이 존재합니다.

댓글

이 블로그의 인기 게시물

[Linear Algebra] 유사변환(Similarity transformation)

유사변환(Similarity transformation) n×n 차원의 정방 행렬 A, B 그리고 가역 행렬 P 사이에 식 1의 관계가 성립하면 행렬 A와 B는 유사행렬(similarity matrix)이 되며 행렬 A를 가역행렬 P와 B로 분해하는 것을 유사 변환(similarity transformation) 이라고 합니다. $$\tag{1} A = PBP^{-1} \Leftrightarrow P^{-1}AP = B $$ 식 2는 식 1의 양변에 B의 고유값을 고려한 것입니다. \begin{align}\tag{식 2} B - \lambda I &= P^{-1}AP – \lambda P^{-1}P\\ &= P^{-1}(AP – \lambda P)\\ &= P^{-1}(A - \lambda I)P \end{align} 식 2의 행렬식은 식 3과 같이 정리됩니다. \begin{align} &\begin{aligned}\textsf{det}(B - \lambda I ) & = \textsf{det}(P^{-1}(AP – \lambda P))\\ &= \textsf{det}(P^{-1}) \textsf{det}((A – \lambda I)) \textsf{det}(P)\\ &= \textsf{det}(P^{-1}) \textsf{det}(P) \textsf{det}((A – \lambda I))\\ &= \textsf{det}(A – \lambda I)\end{aligned}\\ &\begin{aligned}\because \; \textsf{det}(P^{-1}) \textsf{det}(P) &= \textsf{det}(P^{-1}P)\\ &= \textsf{det}(I)\end{aligned}\end{align} 유사행렬의 특성 유사행렬인 두 정방행렬 A와 B는 'A ~ B' 와 같...

[sympy] Sympy객체의 표현을 위한 함수들

Sympy객체의 표현을 위한 함수들 General simplify(x): 식 x(sympy 객체)를 간단히 정리 합니다. import numpy as np from sympy import * x=symbols("x") a=sin(x)**2+cos(x)**2 a $\sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}$ simplify(a) 1 simplify(b) $\frac{x^{3} + x^{2} - x - 1}{x^{2} + 2 x + 1}$ simplify(b) x - 1 c=gamma(x)/gamma(x-2) c $\frac{\Gamma\left(x\right)}{\Gamma\left(x - 2\right)}$ simplify(c) $\displaystyle \left(x - 2\right) \left(x - 1\right)$ 위의 예들 중 객체 c의 감마함수(gamma(x))는 확률분포 등 여러 부분에서 사용되는 표현식으로 다음과 같이 정의 됩니다. 감마함수는 음이 아닌 정수를 제외한 모든 수에서 정의됩니다. 식 1과 같이 자연수에서 감마함수는 factorial(!), 부동소수(양의 실수)인 경우 적분을 적용하여 계산합니다. $$\tag{식 1}\Gamma(n) =\begin{cases}(n-1)!& n:\text{자연수}\\\int^\infty_0x^{n-1}e^{-x}\,dx& n:\text{부동소수}\end{cases}$$ x=symbols('x') gamma(x).subs(x,4) $\displaystyle 6$ factorial 계산은 math.factorial() 함수를 사용할 수 있습니다. import math math.factorial(3) 6 a=gamma(x).subs(x,4.5) a.evalf(3) 11.6 simpilfy() 함수의 알고리즘은 식에서 공통사항을 찾아 정리하...

sympy.solvers로 방정식해 구하기

sympy.solvers로 방정식해 구하기 대수 방정식을 해를 계산하기 위해 다음 함수를 사용합니다. sympy.solvers.solve(f, *symbols, **flags) f=0, 즉 동차방정식에 대해 지정한 변수의 해를 계산 f : 식 또는 함수 symbols: 식의 해를 계산하기 위한 변수, 변수가 하나인 경우는 생략가능(자동으로 인식) flags: 계산 또는 결과의 방식을 지정하기 위한 인수들 dict=True: {x:3, y:1}같이 사전형식, 기본값 = False set=True :{(x,3),(y,1)}같이 집합형식, 기본값 = False ratioal=True : 실수를 유리수로 반환, 기본값 = False positive=True: 해들 중에 양수만을 반환, 기본값 = False 예 $x^2=1$의 해를 결정합니다. solve() 함수에 적용하기 위해서는 다음과 같이 식의 한쪽이 0이 되는 형태인 동차식으로 구성되어야 합니다. $$x^2-1=0$$ import numpy as np from sympy import * x = symbols('x') solve(x**2-1, x) [-1, 1] 위 식은 계산 과정은 다음과 같습니다. $$\begin{aligned}x^2-1=0 \rightarrow (x+1)(x-1)=0 \\ x=1 \; \text{or}\; -1\end{aligned}$$ 예 $x^4=1$의 해를 결정합니다. solve() 함수의 인수 set=True를 지정하였으므로 결과는 집합(set)형으로 반환됩니다. eq=x**4-1 solve(eq, set=True) ([x], {(-1,), (-I,), (1,), (I,)}) 위의 경우 I는 복소수입니다.즉 위 결과의 과정은 다음과 같습니다. $$x^4-1=(x^2+1)(x+1)(x-1)=0 \rightarrow x=\pm \sqrt{-1}, \; \pm 1=\pm i,\; \pm1$$ 실수...