기본 콘텐츠로 건너뛰기

[ML] 결정트리(Decision Tree) 모델

[Linear Algebra] 제한된 최적화(constrained optimization)

제한된 최적화(constrained optimization)

관련된 내용

이차 형식의 변수 x에 대해 극대값 또는 극소값을 찾을 수 있습니다. 이를 위해서는 변수벡터 x를 단위 벡터로 전환하는 것으로 시작합니다.

n 차원의 벡터 x가 단위 벡터라면 식 1이 성립합니다.

$$\tag{식 1}‖x‖= 1 →‖x^2‖= 1 ↔ x^Tx = 1$$

예 1)

제한 조건 $x^Tx = 1$에서의 $Q(x) = 9x_1^2 + 4x_2^2 + 3x_3^2$의 극대값과 극소값을 결정합니다.

제한 조건 $x^Tx = 1$를 나타내면 다음과 같습니다.

x1, x2,x3=symbols("x1 x2 x3")
x=Matrix(3, 1, [x1, x2, x3])
print(np.array(x))
[[x1]
 [x2]
 [x3]]
xTx=x.T*x
eq=Eq(xTx[0], 1)
eq
x12 + x22 + x32 = 1

식 2는 $x_1$이 최대인 경우 Q(x)가 최대이며 $x_3$가 최대인 경우 Q(x)의 최소임를 나타냅니다.

\begin{align}\tag{식 2} x = [1, 0, 0] & → Q(x) ≤ 9 \\x = [0, 0, 1] &→ Q(x) ≥ 3\end{align}

Q(x)는 식3과 같이 2차식 행렬로 나타낼 수 있습니다.

\begin{align}\tag{식 3}Q(x)&=x^TAx \\ & = \begin{bmatrix} x_1& x_2& x_3\end{bmatrix} \begin{bmatrix} 9& 0& 0\\0& 4& 0\\0& 0& 3\end{bmatrix}\begin{bmatrix}x_1\\ x_2\\ x_3 \end{bmatrix}\end{align}

위 행렬 A의 부호를 결정하기 위해 고유값을 확인합니다.

A=np.array([[9,0,0],[0,4,0],[0,0,3]])
d, P=la.eig(A)
print(d)
[9. 4. 3.]

모든 고유값이 양수이므로 행렬 A는 양의 정부호 행렬입니다. 즉, Q(x) > 0입니다. 또한 이 행렬의 고유행렬은 정규직교행렬입니다.

print(np.isclose(P.T, la.inv(P)))
[[ True  True  True]
 [ True  True  True]
 [ True  True  True]]

행렬의 고유벡터와 고유값 사이에 식 4가 성립합니다.

\begin{align}Ax& = λx\\ x^TAx& = λx^Tx\\\tag{식 4} Q(x)& = λx^{-1}x\\& = λ\\∵\;& x^Tx = 1\end{align}

결과적으로 이차식을 나타내는 행렬 A의 변수의 범위가 고유벡터내에서 존재하는 조건에서 최대와 최소는 고유값으로 결정할 수 있습니다. 이 예의 경우 A의 고유값 중의 최대와 최소는 각각 9와 3으로 위에서 계산한 값과 같습니다.

예 2)

위 예에서 이차식의 최대값을 나타내는 단위 고유 벡터 u1 이라고 하면 x Tu1 = 0의 제약 조건을 첨가할 경우 극대값을 계산해 봅니다

u1=P[:,0]
print(u1)
[1. 0. 0.]
Eq((x.T*Matrix(u1))[0], 0)
1.0x1=0

즉, 조건은 첫번째 최대에 대응하는 항이 0이 되는 것으로 최대값은 두번째로 큰 고유값이 됩니다.

x1, 0
eq=x.T*A*x
eq[0].subs(x1, 0)
4x22+3x32
제한된 최대와 최소

대칭 행렬 A의 가장 크고 작은 고유값이 각각 M과 m이고 xTx = 1의 제한 조건에서 A의 최대와 최소값은 각각 M과 m이 됩니다.

행렬 A의 특정한 고유값에 대응하는 고유벡터가 0이 되는 변수의 조건은 그에 대응하는 고유값이 제거됨을 의미합니다. 즉, 제일 큰 고유벡터 u1의 조건 xTu1 = 0은 u1에 대응하는 고유값을 제외합니다.

댓글

이 블로그의 인기 게시물

[Linear Algebra] 유사변환(Similarity transformation)

유사변환(Similarity transformation) n×n 차원의 정방 행렬 A, B 그리고 가역 행렬 P 사이에 식 1의 관계가 성립하면 행렬 A와 B는 유사행렬(similarity matrix)이 되며 행렬 A를 가역행렬 P와 B로 분해하는 것을 유사 변환(similarity transformation) 이라고 합니다. $$\tag{1} A = PBP^{-1} \Leftrightarrow P^{-1}AP = B $$ 식 2는 식 1의 양변에 B의 고유값을 고려한 것입니다. \begin{align}\tag{식 2} B - \lambda I &= P^{-1}AP – \lambda P^{-1}P\\ &= P^{-1}(AP – \lambda P)\\ &= P^{-1}(A - \lambda I)P \end{align} 식 2의 행렬식은 식 3과 같이 정리됩니다. \begin{align} &\begin{aligned}\textsf{det}(B - \lambda I ) & = \textsf{det}(P^{-1}(AP – \lambda P))\\ &= \textsf{det}(P^{-1}) \textsf{det}((A – \lambda I)) \textsf{det}(P)\\ &= \textsf{det}(P^{-1}) \textsf{det}(P) \textsf{det}((A – \lambda I))\\ &= \textsf{det}(A – \lambda I)\end{aligned}\\ &\begin{aligned}\because \; \textsf{det}(P^{-1}) \textsf{det}(P) &= \textsf{det}(P^{-1}P)\\ &= \textsf{det}(I)\end{aligned}\end{align} 유사행렬의 특성 유사행렬인 두 정방행렬 A와 B는 'A ~ B' 와 같

[matplotlib] 히스토그램(Histogram)

히스토그램(Histogram) 히스토그램은 확률분포의 그래픽적인 표현이며 막대그래프의 종류입니다. 이 그래프가 확률분포와 관계가 있으므로 통계적 요소를 나타내기 위해 많이 사용됩니다. plt.hist(X, bins=10)함수를 사용합니다. x=np.random.randn(1000) plt.hist(x, 10) plt.show() 위 그래프의 y축은 각 구간에 해당하는 갯수이다. 빈도수 대신 확률밀도를 나타내기 위해서는 위 함수의 매개변수 normed=True로 조정하여 나타낼 수 있다. 또한 매개변수 bins의 인수를 숫자로 전달할 수 있지만 리스트 객체로 지정할 수 있다. 막대그래프의 경우와 마찬가지로 각 막대의 폭은 매개변수 width에 의해 조정된다. y=np.linspace(min(x)-1, max(x)+1, 10) y array([-4.48810153, -3.54351935, -2.59893717, -1.65435499, -0.70977282, 0.23480936, 1.17939154, 2.12397372, 3.0685559 , 4.01313807]) plt.hist(x, y, normed=True) plt.show()

R 미분과 적분

내용 expression 미분 2차 미분 mosaic를 사용한 미분 적분 미분과 적분 R에서의 미분과 적분 함수는 expression()함수에 의해 생성된 표현식을 대상으로 합니다. expression expression(문자, 또는 식) 이 표현식의 평가는 eval() 함수에 의해 실행됩니다. > ex1<-expression(1+0:9) > ex1 expression(1 + 0:9) > eval(ex1) [1] 1 2 3 4 5 6 7 8 9 10 > ex2<-expression(u, 2, u+0:9) > ex2 expression(u, 2, u + 0:9) > ex2[1] expression(u) > ex2[2] expression(2) > ex2[3] expression(u + 0:9) > u<-0.9 > eval(ex2[3]) [1] 0.9 1.9 2.9 3.9 4.9 5.9 6.9 7.9 8.9 9.9 미분 D(표현식, 미분 변수) 함수로 미분을 실행합니다. 이 함수의 표현식은 expression() 함수로 생성된 객체이며 미분 변수는 다음 식의 분모의 변수를 의미합니다. $$\frac{d}{d \text{변수}}\text{표현식}$$ 이 함수는 어떤 함수의 미분의 결과를 표현식으로 반환합니다. > D(expression(2*x^3), "x") 2 * (3 * x^2) > eq<-expression(log(x)) > eq expression(log(x)) > D(eq, "x") 1/x > eq2<-expression(a/(1+b*exp(-d*x))); eq2 expression(a/(1 + b * exp(-d * x))) > D(eq2, "x") a * (b * (exp(-d * x) * d))/(1 + b