기본 콘텐츠로 건너뛰기

[data analysis]로그-노말 분포(Log-normal distribution)

[data analysis] 회귀모형에서 이상치(outlier) 파악

회귀모형에서 이상치(outlier) 파악

관련된 내용

회귀계수의 검정에서 사용한 f분포는 기본적으로 검정대상이 정규분포에 부합한다는 가정하에 실시합니다. 이점은 회귀분석의 기본가정인 정규성에 대한 이유가 되며 이것을 확인하기 위해 모델에 의해 생성되는 확률변수인 잔차의 정규성을 검정합니다. 정규성을 시각적으로 판단하기 위해 그림 1과 같은 q-q plot을 사용하며 정량적인 검정을 위해 Shapiro-wilk 또는 Anderson-Darling 검정방법을 적용할 수 있습니다.

그림 1은 stats.probplot()에 의한 qq plot으로 양끝에서 정규성에 이탈하는 모양을 나타냅니다. 이에 대한 정량적인 검정은 stats.shapiro() 함수에 의해 실행합니다.

그림 1은 다음 코드로 생성되는 특정한 기간의 코스피 주가의 Open과 Close에 대한 회귀모델에서의 오차(error)에 대한 것입니다. 이 과정에서 원시데이터는 표준화하였습니다.

import numpy as np 
import pandas as pd 
from sklearn.preprocessing import StandardScaler 
from sklearn.linear_model import LinearRegression
from scipy import stats
import matplotlib.pyplot as plt
import FinanceDataReader as fdr
st=pd.Timestamp(2021,1, 1)
et=pd.Timestamp(2024, 5, 10)
kos=fdr.DataReader('KS11',st, et)[["Open","Close"]]
kos.index=range(len(kos))
X=kos.values[:,0].reshape(-1,1)
y=kos.values[:,1].reshape(-1,1)

#독립변수 정규화(표준화)
xScaler=StandardScaler().fit(X)
X_n=xScaler.transform(X)
#반응변수 정규화(표준화)
yScaler=StandardScaler().fit(y)
y_n=yScaler.transform(y)

import statsmodels.api as sm
X_n0=sm.add_constant(X_n)
X_n0.shape, y_n.shape
reg=sm.OLS(y_n, X_n0).fit()
그림 1. 오차의 Q-Q plot.
err=reg.resid
plt.figure(figsize=(5,4))
errorRe=stats.probplot(err.ravel(), plot=plt)
norRe=stats.shapiro(err.ravel())
print("통계량: %.f, p-value: %.3f" %(norRe[0], norRe[1]))
통계량: 1, p-value: 0.000

위 결과에 의하면 오차는 정규성을 만족하는 귀무가설을 기각할 수 있습니다. 이것은 회귀계수의 검정이나 모형의 정확도 검정 모두 정규분포를 기반으로 하기 때문에 회귀모델의 신뢰도를 감소시킵니다. 이 결과는 주로 자료에 포함된 이상치(outlier)들에 의해 기인합니다. 특히 실험 데이터가 아닌 경우 이러한 문제의 발생이 보편적입니다. 그러므로 이상치 제외 등 자료의 조정으로 다시 분석할 수 있습니다.

자료의 이상치를 검사하는 다양한 방법이 존재하지만 소개되는 방법들이 많이 사용되며 statsmodel.api.OLS()에 의해 생성되는 모델의 get_influence() 메소드로 확인할 수 있습니다.

  • Hat 행렬
  • 레버리지(Leverage)
  • 스튜던트 잔차(rstuedent)
  • Cook's Distance(Di)
  • DFFITS(Difference un fits)

댓글

이 블로그의 인기 게시물

유사변환과 대각화

내용 유사변환 유사행렬의 특성 대각화(Diagonalization) 유사변환(Similarity transformation) 유사변환 n×n 차원의 정방 행렬 A, B 그리고 가역 행렬 P 사이에 식 1의 관계가 성립하면 행렬 A와 B는 유사하다고 하며 이 변환을 유사 변환 (similarity transformation)이라고 합니다. $$\begin{equation}\tag{1} A = PBP^{-1} \Leftrightarrow P^{-1}AP = B \end{equation}$$ 식 1의 유사 변환은 다음과 같이 고유값을 적용하여 특성 방정식 형태로 정리할 수 있습니다. $$\begin{align} B - \lambda I &= P^{-1}AP – \lambda P^{-1}P\\ &= P^{-1}(AP – \lambda P)\\ &= P^{-1}(A - \lambda I)P \end{align}$$ 위 식의 행렬식은 다음과 같이 정리됩니다. $$\begin{align} &\begin{aligned}\textsf{det}(B - \lambda I ) & = \textsf{det}(P^{-1}(AP – \lambda P))\\ &= \textsf{det}(P^{-1}) \textsf{det}((A – \lambda I)) \textsf{det}(P)\\ &= \textsf{det}(P^{-1}) \textsf{det}(P) \textsf{det}((A – \lambda I))\\ &= \textsf{det}(A – \lambda I)\end{aligned}\\ &\begin{aligned}\because \; \textsf{det}(P^{-1}) \textsf{det}(P) &= \textsf{det}(P^{-1}P)\\ &= \t

[matplotlib] 히스토그램(Histogram)

히스토그램(Histogram) 히스토그램은 확률분포의 그래픽적인 표현이며 막대그래프의 종류입니다. 이 그래프가 확률분포와 관계가 있으므로 통계적 요소를 나타내기 위해 많이 사용됩니다. plt.hist(X, bins=10)함수를 사용합니다. x=np.random.randn(1000) plt.hist(x, 10) plt.show() 위 그래프의 y축은 각 구간에 해당하는 갯수이다. 빈도수 대신 확률밀도를 나타내기 위해서는 위 함수의 매개변수 normed=True로 조정하여 나타낼 수 있다. 또한 매개변수 bins의 인수를 숫자로 전달할 수 있지만 리스트 객체로 지정할 수 있다. 막대그래프의 경우와 마찬가지로 각 막대의 폭은 매개변수 width에 의해 조정된다. y=np.linspace(min(x)-1, max(x)+1, 10) y array([-4.48810153, -3.54351935, -2.59893717, -1.65435499, -0.70977282, 0.23480936, 1.17939154, 2.12397372, 3.0685559 , 4.01313807]) plt.hist(x, y, normed=True) plt.show()

R 미분과 적분

내용 expression 미분 2차 미분 mosaic를 사용한 미분 적분 미분과 적분 R에서의 미분과 적분 함수는 expression()함수에 의해 생성된 표현식을 대상으로 합니다. expression expression(문자, 또는 식) 이 표현식의 평가는 eval() 함수에 의해 실행됩니다. > ex1<-expression(1+0:9) > ex1 expression(1 + 0:9) > eval(ex1) [1] 1 2 3 4 5 6 7 8 9 10 > ex2<-expression(u, 2, u+0:9) > ex2 expression(u, 2, u + 0:9) > ex2[1] expression(u) > ex2[2] expression(2) > ex2[3] expression(u + 0:9) > u<-0.9 > eval(ex2[3]) [1] 0.9 1.9 2.9 3.9 4.9 5.9 6.9 7.9 8.9 9.9 미분 D(표현식, 미분 변수) 함수로 미분을 실행합니다. 이 함수의 표현식은 expression() 함수로 생성된 객체이며 미분 변수는 다음 식의 분모의 변수를 의미합니다. $$\frac{d}{d \text{변수}}\text{표현식}$$ 이 함수는 어떤 함수의 미분의 결과를 표현식으로 반환합니다. > D(expression(2*x^3), "x") 2 * (3 * x^2) > eq<-expression(log(x)) > eq expression(log(x)) > D(eq, "x") 1/x > eq2<-expression(a/(1+b*exp(-d*x))); eq2 expression(a/(1 + b * exp(-d * x))) > D(eq2, "x") a * (b * (exp(-d * x) * d))/(1 + b