기본 콘텐츠로 건너뛰기

벡터와 행렬에 관련된 그림들

[data analysis] 회귀모형에서 이상치(outlier) 파악

회귀모형에서 이상치(outlier) 파악

관련된 내용

회귀계수의 검정에서 사용한 f분포는 기본적으로 검정대상이 정규분포에 부합한다는 가정하에 실시합니다. 이점은 회귀분석의 기본가정인 정규성에 대한 이유가 되며 이것을 확인하기 위해 모델에 의해 생성되는 확률변수인 잔차의 정규성을 검정합니다. 정규성을 시각적으로 판단하기 위해 그림 1과 같은 q-q plot을 사용하며 정량적인 검정을 위해 Shapiro-wilk 또는 Anderson-Darling 검정방법을 적용할 수 있습니다.

그림 1은 stats.probplot()에 의한 qq plot으로 양끝에서 정규성에 이탈하는 모양을 나타냅니다. 이에 대한 정량적인 검정은 stats.shapiro() 함수에 의해 실행합니다.

그림 1은 다음 코드로 생성되는 특정한 기간의 코스피 주가의 Open과 Close에 대한 회귀모델에서의 오차(error)에 대한 것입니다. 이 과정에서 원시데이터는 표준화하였습니다.

import numpy as np 
import pandas as pd 
from sklearn.preprocessing import StandardScaler 
from sklearn.linear_model import LinearRegression
from scipy import stats
import matplotlib.pyplot as plt
import FinanceDataReader as fdr
st=pd.Timestamp(2021,1, 1)
et=pd.Timestamp(2024, 5, 10)
kos=fdr.DataReader('KS11',st, et)[["Open","Close"]]
kos.index=range(len(kos))
X=kos.values[:,0].reshape(-1,1)
y=kos.values[:,1].reshape(-1,1)

#독립변수 정규화(표준화)
xScaler=StandardScaler().fit(X)
X_n=xScaler.transform(X)
#반응변수 정규화(표준화)
yScaler=StandardScaler().fit(y)
y_n=yScaler.transform(y)

import statsmodels.api as sm
X_n0=sm.add_constant(X_n)
X_n0.shape, y_n.shape
reg=sm.OLS(y_n, X_n0).fit()
그림 1. 오차의 Q-Q plot.
err=reg.resid
plt.figure(figsize=(5,4))
errorRe=stats.probplot(err.ravel(), plot=plt)
norRe=stats.shapiro(err.ravel())
print("통계량: %.f, p-value: %.3f" %(norRe[0], norRe[1]))
통계량: 1, p-value: 0.000

위 결과에 의하면 오차는 정규성을 만족하는 귀무가설을 기각할 수 있습니다. 이것은 회귀계수의 검정이나 모형의 정확도 검정 모두 정규분포를 기반으로 하기 때문에 회귀모델의 신뢰도를 감소시킵니다. 이 결과는 주로 자료에 포함된 이상치(outlier)들에 의해 기인합니다. 특히 실험 데이터가 아닌 경우 이러한 문제의 발생이 보편적입니다. 그러므로 이상치 제외 등 자료의 조정으로 다시 분석할 수 있습니다.

자료의 이상치를 검사하는 다양한 방법이 존재하지만 소개되는 방법들이 많이 사용되며 statsmodel.api.OLS()에 의해 생성되는 모델의 get_influence() 메소드로 확인할 수 있습니다.

  • Hat 행렬
  • 레버리지(Leverage)
  • 스튜던트 잔차(rstuedent)
  • Cook's Distance(Di)
  • DFFITS(Difference un fits)

댓글

이 블로그의 인기 게시물

[Linear Algebra] 유사변환(Similarity transformation)

유사변환(Similarity transformation) n×n 차원의 정방 행렬 A, B 그리고 가역 행렬 P 사이에 식 1의 관계가 성립하면 행렬 A와 B는 유사행렬(similarity matrix)이 되며 행렬 A를 가역행렬 P와 B로 분해하는 것을 유사 변환(similarity transformation) 이라고 합니다. $$\tag{1} A = PBP^{-1} \Leftrightarrow P^{-1}AP = B $$ 식 2는 식 1의 양변에 B의 고유값을 고려한 것입니다. \begin{align}\tag{식 2} B - \lambda I &= P^{-1}AP – \lambda P^{-1}P\\ &= P^{-1}(AP – \lambda P)\\ &= P^{-1}(A - \lambda I)P \end{align} 식 2의 행렬식은 식 3과 같이 정리됩니다. \begin{align} &\begin{aligned}\textsf{det}(B - \lambda I ) & = \textsf{det}(P^{-1}(AP – \lambda P))\\ &= \textsf{det}(P^{-1}) \textsf{det}((A – \lambda I)) \textsf{det}(P)\\ &= \textsf{det}(P^{-1}) \textsf{det}(P) \textsf{det}((A – \lambda I))\\ &= \textsf{det}(A – \lambda I)\end{aligned}\\ &\begin{aligned}\because \; \textsf{det}(P^{-1}) \textsf{det}(P) &= \textsf{det}(P^{-1}P)\\ &= \textsf{det}(I)\end{aligned}\end{align} 유사행렬의 특성 유사행렬인 두 정방행렬 A와 B는 'A ~ B' 와 같...

[sympy] Sympy객체의 표현을 위한 함수들

Sympy객체의 표현을 위한 함수들 General simplify(x): 식 x(sympy 객체)를 간단히 정리 합니다. import numpy as np from sympy import * x=symbols("x") a=sin(x)**2+cos(x)**2 a $\sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}$ simplify(a) 1 simplify(b) $\frac{x^{3} + x^{2} - x - 1}{x^{2} + 2 x + 1}$ simplify(b) x - 1 c=gamma(x)/gamma(x-2) c $\frac{\Gamma\left(x\right)}{\Gamma\left(x - 2\right)}$ simplify(c) $\displaystyle \left(x - 2\right) \left(x - 1\right)$ 위의 예들 중 객체 c의 감마함수(gamma(x))는 확률분포 등 여러 부분에서 사용되는 표현식으로 다음과 같이 정의 됩니다. 감마함수는 음이 아닌 정수를 제외한 모든 수에서 정의됩니다. 식 1과 같이 자연수에서 감마함수는 factorial(!), 부동소수(양의 실수)인 경우 적분을 적용하여 계산합니다. $$\tag{식 1}\Gamma(n) =\begin{cases}(n-1)!& n:\text{자연수}\\\int^\infty_0x^{n-1}e^{-x}\,dx& n:\text{부동소수}\end{cases}$$ x=symbols('x') gamma(x).subs(x,4) $\displaystyle 6$ factorial 계산은 math.factorial() 함수를 사용할 수 있습니다. import math math.factorial(3) 6 a=gamma(x).subs(x,4.5) a.evalf(3) 11.6 simpilfy() 함수의 알고리즘은 식에서 공통사항을 찾아 정리하...

sympy.solvers로 방정식해 구하기

sympy.solvers로 방정식해 구하기 대수 방정식을 해를 계산하기 위해 다음 함수를 사용합니다. sympy.solvers.solve(f, *symbols, **flags) f=0, 즉 동차방정식에 대해 지정한 변수의 해를 계산 f : 식 또는 함수 symbols: 식의 해를 계산하기 위한 변수, 변수가 하나인 경우는 생략가능(자동으로 인식) flags: 계산 또는 결과의 방식을 지정하기 위한 인수들 dict=True: {x:3, y:1}같이 사전형식, 기본값 = False set=True :{(x,3),(y,1)}같이 집합형식, 기본값 = False ratioal=True : 실수를 유리수로 반환, 기본값 = False positive=True: 해들 중에 양수만을 반환, 기본값 = False 예 $x^2=1$의 해를 결정합니다. solve() 함수에 적용하기 위해서는 다음과 같이 식의 한쪽이 0이 되는 형태인 동차식으로 구성되어야 합니다. $$x^2-1=0$$ import numpy as np from sympy import * x = symbols('x') solve(x**2-1, x) [-1, 1] 위 식은 계산 과정은 다음과 같습니다. $$\begin{aligned}x^2-1=0 \rightarrow (x+1)(x-1)=0 \\ x=1 \; \text{or}\; -1\end{aligned}$$ 예 $x^4=1$의 해를 결정합니다. solve() 함수의 인수 set=True를 지정하였으므로 결과는 집합(set)형으로 반환됩니다. eq=x**4-1 solve(eq, set=True) ([x], {(-1,), (-I,), (1,), (I,)}) 위의 경우 I는 복소수입니다.즉 위 결과의 과정은 다음과 같습니다. $$x^4-1=(x^2+1)(x+1)(x-1)=0 \rightarrow x=\pm \sqrt{-1}, \; \pm 1=\pm i,\; \pm1$$ 실수...