기본 콘텐츠로 건너뛰기

[matplotlib] 등고선(Contour)

[data analysis] Hat 행렬

Hat 행렬

관련된 내용

hat 행렬(H)은 회귀모델을 적용하여 $\hat{y}$을 추정하는 과정에서 설명변수의 영향을 나타내기 위해 작성합니다. 식 1과 같이 최소제곱 방법에 의한 회귀계수를 적용한 추정치의 추정 과정에서 설명변수만으로 구성된 부분을 hat 행렬(P)이라 합니다.

\begin{align}\hat{y} & = Xb\\&=X(X^TX)^{-1}X^Ty\\& = Py\\ H&= X(X^TX)^{-1}X^T\\& = P\end{align} (식 1)

이상치는 그 데이터가 보이는 일반적인 경향을 따르지 않는 값(들)을 의미합니다. 회귀분석시 일반적으로 이상치는 반응변수 값의 측면에서 고려되지만 설명변수 측면에서 극단의 값(x값)을 가진다면 그 데이터 지점은 높은 레버리지(leverage)를 가진다고 말합니다. 이 레버리지 즉, 각 샘플의 설명변수의 영향은 hat 행렬의 대각요소의 값으로 나타낼 수 있습니다.

hat 행렬은 이상치를 판단하기 위한 기본 값들로 이를 기준으로 여러 지표를 계산할 수 있습니다. statsmodel.api.OLS()에 의해 생성되는 모델의 get_influence() 메소드는 이상치 판단을 위한 여러 지표들의 결과를 나타냅니다. 이 결과는 .summary_frame() 메소드로 확인할 수 있습니다.

기사 회귀모형에서 이상치(outlier) 파악편에서 구축한 회귀모델 reg에 대해 이 메소드들을 실행하면 다음과 같습니다.

import numpy as np 
import pandas as pd 
from sklearn.preprocessing import StandardScaler 
import matplotlib.pyplot as plt
import FinanceDataReader as fdr
import statsmodels.api as sm
from scipy import stats
st=pd.Timestamp(2021,1, 1)
et=pd.Timestamp(2024, 5, 10)
kos=fdr.DataReader('KS11',st, et)[["Open","Close"]]
kos.index=range(len(kos))
X=kos.values[:,0].reshape(-1,1)
y=kos.values[:,1].reshape(-1,1)

#독립변수 정규화(표준화)
xScaler=StandardScaler().fit(X)
X_n=xScaler.transform(X)
#반응변수 정규화(표준화)
yScaler=StandardScaler().fit(y)
y_n=yScaler.transform(y)

X_n0=sm.add_constant(X_n)
X_n0.shape, y_n.shape
reg=sm.OLS(y_n, X_n0).fit()
influence=reg.get_influence()
infSummary=influence.summary_frame()
infSummary.round(4).head(3)
dfb_const dfb_x1 cooks_d standard_resid hat_diag dffits_internal student_resid dffits
0 0.1106 0.0620 0.0079 3.1599 0.0016 0.1261 3.1773 0.1268
1 0.0755 0.0597 0.0046 2.1649 0.0020 0.0961 2.1698 0.0963
2 -0.0337 -0.0323 0.0011 -0.9695 0.0023 -0.0467 -0.9694 -0.0467

댓글

이 블로그의 인기 게시물

[Linear Algebra] 유사변환(Similarity transformation)

유사변환(Similarity transformation) n×n 차원의 정방 행렬 A, B 그리고 가역 행렬 P 사이에 식 1의 관계가 성립하면 행렬 A와 B는 유사행렬(similarity matrix)이 되며 행렬 A를 가역행렬 P와 B로 분해하는 것을 유사 변환(similarity transformation) 이라고 합니다. $$\tag{1} A = PBP^{-1} \Leftrightarrow P^{-1}AP = B $$ 식 2는 식 1의 양변에 B의 고유값을 고려한 것입니다. \begin{align}\tag{식 2} B - \lambda I &= P^{-1}AP – \lambda P^{-1}P\\ &= P^{-1}(AP – \lambda P)\\ &= P^{-1}(A - \lambda I)P \end{align} 식 2의 행렬식은 식 3과 같이 정리됩니다. \begin{align} &\begin{aligned}\textsf{det}(B - \lambda I ) & = \textsf{det}(P^{-1}(AP – \lambda P))\\ &= \textsf{det}(P^{-1}) \textsf{det}((A – \lambda I)) \textsf{det}(P)\\ &= \textsf{det}(P^{-1}) \textsf{det}(P) \textsf{det}((A – \lambda I))\\ &= \textsf{det}(A – \lambda I)\end{aligned}\\ &\begin{aligned}\because \; \textsf{det}(P^{-1}) \textsf{det}(P) &= \textsf{det}(P^{-1}P)\\ &= \textsf{det}(I)\end{aligned}\end{align} 유사행렬의 특성 유사행렬인 두 정방행렬 A와 B는 'A ~ B' 와 같...

[sympy] Sympy객체의 표현을 위한 함수들

Sympy객체의 표현을 위한 함수들 General simplify(x): 식 x(sympy 객체)를 간단히 정리 합니다. import numpy as np from sympy import * x=symbols("x") a=sin(x)**2+cos(x)**2 a $\sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}$ simplify(a) 1 simplify(b) $\frac{x^{3} + x^{2} - x - 1}{x^{2} + 2 x + 1}$ simplify(b) x - 1 c=gamma(x)/gamma(x-2) c $\frac{\Gamma\left(x\right)}{\Gamma\left(x - 2\right)}$ simplify(c) $\displaystyle \left(x - 2\right) \left(x - 1\right)$ 위의 예들 중 객체 c의 감마함수(gamma(x))는 확률분포 등 여러 부분에서 사용되는 표현식으로 다음과 같이 정의 됩니다. 감마함수는 음이 아닌 정수를 제외한 모든 수에서 정의됩니다. 식 1과 같이 자연수에서 감마함수는 factorial(!), 부동소수(양의 실수)인 경우 적분을 적용하여 계산합니다. $$\tag{식 1}\Gamma(n) =\begin{cases}(n-1)!& n:\text{자연수}\\\int^\infty_0x^{n-1}e^{-x}\,dx& n:\text{부동소수}\end{cases}$$ x=symbols('x') gamma(x).subs(x,4) $\displaystyle 6$ factorial 계산은 math.factorial() 함수를 사용할 수 있습니다. import math math.factorial(3) 6 a=gamma(x).subs(x,4.5) a.evalf(3) 11.6 simpilfy() 함수의 알고리즘은 식에서 공통사항을 찾아 정리하...

sympy.solvers로 방정식해 구하기

sympy.solvers로 방정식해 구하기 대수 방정식을 해를 계산하기 위해 다음 함수를 사용합니다. sympy.solvers.solve(f, *symbols, **flags) f=0, 즉 동차방정식에 대해 지정한 변수의 해를 계산 f : 식 또는 함수 symbols: 식의 해를 계산하기 위한 변수, 변수가 하나인 경우는 생략가능(자동으로 인식) flags: 계산 또는 결과의 방식을 지정하기 위한 인수들 dict=True: {x:3, y:1}같이 사전형식, 기본값 = False set=True :{(x,3),(y,1)}같이 집합형식, 기본값 = False ratioal=True : 실수를 유리수로 반환, 기본값 = False positive=True: 해들 중에 양수만을 반환, 기본값 = False 예 $x^2=1$의 해를 결정합니다. solve() 함수에 적용하기 위해서는 다음과 같이 식의 한쪽이 0이 되는 형태인 동차식으로 구성되어야 합니다. $$x^2-1=0$$ import numpy as np from sympy import * x = symbols('x') solve(x**2-1, x) [-1, 1] 위 식은 계산 과정은 다음과 같습니다. $$\begin{aligned}x^2-1=0 \rightarrow (x+1)(x-1)=0 \\ x=1 \; \text{or}\; -1\end{aligned}$$ 예 $x^4=1$의 해를 결정합니다. solve() 함수의 인수 set=True를 지정하였으므로 결과는 집합(set)형으로 반환됩니다. eq=x**4-1 solve(eq, set=True) ([x], {(-1,), (-I,), (1,), (I,)}) 위의 경우 I는 복소수입니다.즉 위 결과의 과정은 다음과 같습니다. $$x^4-1=(x^2+1)(x+1)(x-1)=0 \rightarrow x=\pm \sqrt{-1}, \; \pm 1=\pm i,\; \pm1$$ 실수...