다음 그래프들은 전자책 파이썬과 함께하는 통계이야기 3 장에 수록된 그림들의 코드들입니다.
import numpy as np
import pandas as pd
from scipy import stats
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_style("darkgrid")
#fig 311
uni, p=[0, 1, 2],[0.25, 0.5, 0.25]
fig, ax=plt.subplots(figsize=(4,3))
ax.bar(uni, p, color="g", alpha=0.3)
ax.set_xlabel("# of head(H)")
ax.set_ylabel("PMF")
ax.set_yticks(p)
ax.set_xticks(uni)
plt.show()
#fig 312
import itertools
ca=list(itertools.product(range(1, 7), repeat=2))
S=[sum(i) for i in ca]
uni, fre=np.unique(S, return_counts=True)
fresum=sum(fre)
p=[i/fresum for i in fre]
fig, ax=plt.subplots(figsize=(4,3))
ax.bar(uni, p, color="g", alpha=0.3)
ax.set_xlabel("Sum of number")
ax.set_ylabel("PMF")
ax.set_yticks(np.array(p).round(3))
ax.set_xticks(uni)
plt.show()
#fig 313
ca=list(itertools.product([0, 1], repeat=2))
S=[sum(i) for i in ca]
uni, fre=np.unique(S, return_counts=True)
re=pd.DataFrame([uni, fre, fre/fre.sum()], index=["x","Freq", "prop"])
p_cum=np.cumsum(re.iloc[2,:])
fig, ax=plt.subplots(figsize=(4,3))
ax.bar(uni, re.values[2,:], color="g", alpha=0.3, label="PMF")
ax.step(uni, p_cum, color="b", label="CDF")
ax.set_xlabel("x")
ax.set_ylabel("Probability")
ax.set_yticks([0, 0.25, 0.5, 0.75, 1])
ax.set_xticks(re.values[0,:])
ax.legend(loc="best")
plt.show()
#fig 314
pmf1=stats.binom.pmf(range(0, 11), 10, 0.3)
pmf2=stats.binom.pmf(range(0, 21), 20, 0.6)
fig, ax=plt.subplots(figsize=(4,3))
ax.bar(range(0, 11), pmf1, color="brown", label="B(10, 0.3)")
ax.bar(range(0, 21), pmf2, color="g", label="B(20, 0.6)")
ax.set_xlabel("x")
ax.set_ylabel("Probability")
ax.legend(loc="best")
plt.show()
# fig 315
x=range(1, 16)
p1=stats.geom.pmf(x, 0.1)
p2=stats.geom.pmf(x, 0.3)
p3=stats.geom.pmf(x, 0.5)
p4=stats.geom.pmf(x, 0.7)
fig, ax=plt.subplots(figsize=(4,3))
p=[p1,p2,p3,p4]
col=['g','b','r','k']
nme=[0.1, 0.3, 0.5, 0.7]
for i in range(len(p)):
ax.plot(x, p[i], color=col[i], label=f"Geometric({nme[i]})")
ax.set_xlabel("x")
ax.set_ylabel("Probability")
ax.legend(loc="best")
plt.show()
#fig 316
x=range(3, 30)
p1=stats.nbinom.pmf(x, 3, 0.1)
p3=stats.nbinom.pmf(x, 3, 0.3)
p5=stats.nbinom.pmf(x, 3, 0.5)
p7=stats.nbinom.pmf(x, 3, 0.7)
fig, ax=plt.subplots(figsize=(4,3))
p=[p1,p3,p5,p7]
col=['g','b','r','k']
nme=[0.1, 0.3, 0.5, 0.7]
for i in range(len(p)):
ax.plot(x, p[i], color=col[i], label=f"NB(3, {nme[i]})")
ax.set_xlabel("x")
ax.set_ylabel("Probability")
ax.legend(loc="best")
plt.show()
#fig 317
M=80; n=50; N=20
re=stats.hypergeom.pmf(range(21), M, n, N)
fig, ax=plt.subplots(figsize=(4,3))
ax.bar(range(21), re, color="g", label="hypergeom(80, 50, 20)")
ax.set_xlabel("x")
ax.set_ylabel("Probability")
ax.set_ylim([0, 0.25])
ax.legend(loc="best", frameon=False)
plt.show()
#fig 318
x=range(1, 41)
p=[1, 5, 10, 30]
pmf={}
for i in p:
pmf[i]=stats.poisson.pmf(x, i)
fig, ax=plt.subplots(figsize=(4,3))
col=["g",'b','r','k']
for i in range(4):
ax.plot(x, pmf[p[i]], color=col[i], alpha=0.6, label=f"Poisson({p[i]})")
ax.set_xlabel("x")
ax.set_ylabel("Probability")
ax.legend(loc="best", frameon=False)
plt.show()
#fig 319
x=range(1, 20)
pmf=stats.poisson.pmf(x, 25/3)
fig, ax=plt.subplots(figsize=(4,3))
ax.bar(x, pmf, color="g", alpha=0.6, label=r"Poisson$\left(\frac{25}{3}\right)$")
ax.set_xlabel("x")
ax.set_ylabel("Probability")
ax.legend(loc="best", frameon=False)
plt.show()
#fig321
x=np.linspace(-4, 4, 100)
p=stats.norm.pdf(x)
nme=[r"-2.56$\sigma$", r"-1.96$\sigma$", r"$\sigma$", r'$\mu$', r"$\sigma$", r"1.96$\sigma$", r"2.56$\sigma$"]
x1=np.linspace(-1, 1, 100)
x21=np.linspace(-1.96, -1, 100)
x22=np.linspace(1, 1.96, 100)
x31=np.linspace(-2.56, -1.96, 100 )
x32=np.linspace(1.96, 2.56, 100)
fig, ax=plt.subplots(figsize=(4,3))
ax.plot(x, p, color="r")
ax.fill_between(x1, stats.norm.pdf(x1), color="g", alpha=0.3, label="68%")
ax.fill_between(x21, stats.norm.pdf(x21), color="b", alpha=0.3, label="95%")
ax.fill_between(x22, stats.norm.pdf(x22), color="b", alpha=0.3)
ax.fill_between(x31, stats.norm.pdf(x31), color="brown", alpha=0.3, label="99%")
ax.fill_between(x32, stats.norm.pdf(x32), color="brown", alpha=0.3)
ax.set_xlabel("x")
ax.set_ylabel("Probability")
ax.set_xticks(ticks=[-2.56, -1.96, -1, 0, 1, 1.96, 2.56], labels=nme)
ax.set_title("Normal Distribution")
ax.legend(loc="best")
plt.show()
#fig 322
x=np.sort(stats.norm.rvs(size=50, random_state=3))
y=stats.norm.pdf(x)
x2=np.sort(stats.norm.rvs(size=1000, random_state=3))
y2=stats.norm.pdf(x2)
fig, (ax1, ax2)=plt.subplots(nrows=1, ncols=2, figsize=(8, 3))
ax1.hist(x,bins=10, density=True, rwidth=0.8, label="size=50")
ax1.plot(x, y, color="r", label="N(0,1)")
ax1.set_xlabel("x")
ax1.set_ylabel("probability")
ax1.legend(loc="best")
ax2.hist(x2,bins=10, density=True, rwidth=0.8, label="size=1000")
ax2.plot(x2, y2, color="r", label="N(0,1)")
ax2.set_xlabel("x")
ax2.legend(loc="best")
plt.show()
#fig 323
x=np.sort(stats.norm.rvs(size=1000, random_state=3))
y=stats.norm.pdf(x)
mu=[-2, 0, 1, 2]
sigma=[1, 1.5, 2, 2.5]
col=["r",'b', 'g','orange']
fig, (ax1, ax2)=plt.subplots(nrows=1, ncols=2, figsize=(8, 3))
for i in range(4):
ax1.plot(x, stats.norm.pdf(x, mu[i], 1), color=col[i], label=f"N({mu[i]},1)")
ax2.plot(x, stats.norm.pdf(x, 0, sigma[i]), color=col[i], label=f"N(0, {sigma[i]})")
ax1.set_xlabel("x, (a) Change in $\mu$", loc="right")
ax1.set_ylabel("probability")
ax1.set_ylim(0, 0.7)
ax1.vlines(0, 0, 0.7, color="k", alpha=0.3)
ax1.legend(loc="best", frameon=False)
ax2.set_xlabel("x, (b) Change in $\sigma$", loc="right")
ax2.legend(loc="best", frameon=False)
ax2.set_ylim(0, 0.42)
ax2.vlines(0, 0, 0.42, color="k", alpha=0.3)
plt.show()
#fig 324
x=np.linspace(-3, 3, 100)
x1=np.linspace(-3, 0, 100)
x2=np.linspace(0, 3, 100)
y=stats.norm.pdf(x)
plt.figure(figsize=(4,3))
plt.plot(x, y, color="g", label="N(0, 1)")
plt.fill_between(x1, stats.norm.pdf(x1), color="b", alpha=0.3, label="50%")
plt.fill_between(x2, stats.norm.pdf(x2), color="g", alpha=0.3, label="50%")
plt.xlabel("x")
plt.ylabel("pdf")
plt.yticks([0.1, 0.2, 0.3, 0.4])
plt.legend(loc="upper left", frameon=False)
plt.text(1, 0.3, r"f(x)=$\frac{1}{\sqrt{2}}e^{-\frac{x^2}{2}}$", color="g", size="12")
plt.show()
#fig 325
x=np.linspace(-25, 5, 1000)
y1=stats.norm.pdf(x, -10, 4)
y2=stats.norm.pdf(x)
plt.figure(figsize=(4,3))
plt.plot(x, y1, color="g", label="N(-10, 4)")
plt.plot(x, y2, color="b", label="N(0,1)")
plt.xlabel("x")
plt.ylabel("pdf", rotation="horizontal", labelpad=10)
plt.legend(loc="center left", frameon=False)
plt.show()
#fig 326
x=np.linspace(0.01, 6, 1000)
plt.figure(figsize=(4,3))
col=["g", "b", "r"]
for i, j in enumerate([0.5, 1, 2]):
y=stats.expon.pdf(x, j)
idx=np.where(y>0)[0]
plt.plot(x[idx], y[idx], color=col[i], label=r"$\lambda$="+str(j))
plt.xlabel("x")
plt.ylabel("pdf", rotation="horizontal", labelpad=10)
plt.legend(loc="best", frameon=False)
plt.show()
#fig 327
x=np.linspace(0.01, 14, 1000)
fig, ax=plt.subplots(figsize=(4,3))
lam=0.413
y=stats.expon.pdf(x, lam, 1/lam)
num=[ 1, 2, 3 , 4, 5, 6 , 7, 11, 12, 13, 14]
prop=[0.489, 0.252, 0.067, 0.067, 0.052, 0.03 , 0.007, 0.007, 0.007, 0.007 ,0.015]
idx=np.where(y>0)[0]
plt.bar(num, prop, color="g", alpha=0.3)
plt.plot(x[idx], y[idx], color='g', label=r"$\lambda$="+str(lam))
plt.xlabel("x")
plt.ylabel("pdf", rotation="horizontal", labelpad=10)
plt.legend(loc="best", frameon=False)
plt.show()
#fig 328
from scipy import special
x=np.linspace(0.1, 4.1, 100)
y=special.gamma(x)
plt.figure(figsize=(4,3))
plt.plot(x, y)
plt.xlabel("x")
plt.ylabel(r"$\Gamma(x)$", rotation="horizontal", labelpad=10)
plt.show()
#fig 329
x=np.linspace(0, 20, 1000)
ab=[1, 3,5,7]
col=['g','b','r','k']
fig, (ax1, ax2)=plt.subplots(nrows=1, ncols=2, figsize=(8, 3))
for i, j in zip(col, ab):
y=stats.gamma.pdf(x, j, 1)
ax1.plot(x, y, color=i, label=f"Gamma({j}, 1)")
y2=stats.gamma.pdf(x, 10, 0, 1/j)
ax2.plot(x, y2, color=i, label=f"Gamma(10, {j})")
ax1.set_xlabel("x\n(a)", loc="center" , size="12")
ax1.set_ylabel("pdf")
ax1.legend(loc="best")
ax2.set_xlabel("x\n(b)", loc="center", size="12" )
ax2.legend(loc="best")
plt.show()
#fig 3210
x=np.linspace(0, 21, 1000)
k=[1, 3,5,10,20]
col=['g','b','r','k', "orange"]
plt.figure(figsize=(4, 3))
for i, j in zip(col, k):
y=stats.chi2.pdf(x, j)
plt.plot(x, y, color=i, label=r"$\chi^2$("+str(j)+")")
plt.xlabel("x")
plt.ylabel("pdf", rotation="horizontal", labelpad=10)
plt.ylim(-0.01, 0.4)
plt.legend(loc="best")
plt.show()
#fig 3211
x=stats.norm.rvs(size=1000)
y=stats.norm.rvs(size=900)
z=np.append(x**2, y**2)
z1=np.sort(z)
fig, ax=plt.subplots(figsize=(4,3))
ax.hist(z1, bins=15, rwidth=0.9, color="g", alpha=0.3, label="histogram")
ax.set_xlabel("z1")
ax.set_ylabel("frequency", color="g")
ax2=plt.twinx()
ax2.plot(z1, stats.chi2.pdf(z1, 2), color="b", label=r"$\chi^2$(2)")
ax2.set_ylabel("pdf", color="b")
ax.legend(loc=(0.6, 0.8), frameon=False)
ax2.legend(loc=(0.6, 0.7), frameon=False)
plt.show()
#fig 3212
x=np.linspace(-3, 3, 1000)
k=[1, 5, 10]
col=['g','b','r']
plt.figure(figsize=(4,3))
plt.plot(x, stats.norm.pdf(x), label="N(0, 1)")
for i, j in zip(k, col):
plt.plot(x, stats.t.pdf(x, i), color=j, label=f"t({i})")
plt.xlabel("x")
plt.ylabel("pdf", rotation="horizontal", labelpad=10)
plt.legend(loc='best', frameon=False)
plt.show()
#fig 3213
x=np.linspace(0, 4, 1000)
n=[2, 4, 8, 12]
d=[4, 8, 12, 16]
col=['g','b','r', 'k']
plt.figure(figsize=(4,3))
for i in range(4):
plt.plot(x, stats.f.pdf(x, n[i], d[i]), color=col[i], label=f"F{n[i], d[i]}")
plt.xlabel("x")
plt.ylabel("pdf", rotation="horizontal", labelpad=10)
plt.legend(loc='best', frameon=False)
plt.show()






















댓글
댓글 쓰기