기본 콘텐츠로 건너뛰기

[matplotlib] 등고선(Contour)

[seaborn] 다중 플롯 작성

다중 플롯 작성

Figure-level 함수는 유사한 종류의 플롯을 작성할 수 있으므로 다른 종류 예를 들어 산점도와 히스토그램을 동시에 작성하기 위해서는 axes-level 함수를 사용해야 합니다. 또한 이 레벨의 함수는 matplotlib에 의존하므로 플롯의 레이아웃을 설정하기 위해 subplots() 함수를 적용할 수 있습니다.

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
plt.rcParams['font.family'] ='NanumGothic'
plt.rcParams['axes.unicode_minus'] =False
import seaborn as sns
pen=sns.load_dataset("penguins")
fig, axs=plt.subplots(1,2, figsize=(8,3), gridspec_kw=dict(width_ratios=[4,3]))
sns.scatterplot(data=pen, x="flipper_length_mm", y="bill_length_mm", hue="species", ax=axs[0])
sns.histplot(data=pen, x="species", hue="species",  shrink=.8, alpha=.8,  legend=False, ax=axs[1])
fig.tight_layout()

위 코드에서 plt.subplots() 함수의 인수 gridspec_kw는 각 subplots의 레이아웃에 대한 값들을 사전(dictionary)형식으로 지원하기 위한 매개변수입니다.

figure-level 함수는 다른 종류의 그래프들로 구성된 다중 플롯을 작성 할 수 없습니다. 즉, 이 수준의 함수는 초기화를 포함하여 자신의 플롯을 독점적으로 소유하므로 위의 axes-level 함수와 같이 전체 플롯을 분리하여 사용하는 것을 허락하지 않습니다. 그러나 동일한 축에 여러 형태의 플롯을 추가하는 것은 가능합니다.

다음 함수 relplot()을 작성한 그림 틀인 g에 axline()을 작성합니다. 이 함수의 xy1은 line 이 통과하는 지점입니다. 매개변수 dashes=(5, 2)는 대시 길이가 5, 공백길이가 2로 지정한 것입니다.

tips=sns.load_dataset('tips')
tips.head(3)
total_bill tip sex smoker day time size
0 16.99 1.01 Female No Sun Dinner 2
1 10.34 1.66 Male No Sun Dinner 3
2 21.01 3.50 Male No Sun Dinner 3
tips = sns.load_dataset("tips")
g = sns.relplot(data=tips, x="total_bill", y="tip")
g.ax.axline(xy1=(10, 2), slope=.2, color="b", dashes=(5, 2))
plt.show()

relplot() 함수의 인수 col에 변수를 지정하여 여러개의 플롯을 작성할 수 있습니다. 지정한 변수는 여러개의 클래스가진 것으로 각 클래스에 대응하는 산점도로 선그래프를 작성합니다. 다음은 데이터 pen에 대한 것으로 male과 female의 클래스를 가진 변수 sex를 col에 전달하여 각 클래스에 대응하는 산점도를 작성한 것입니다.

g=sns.relplot(data=pen, x="flipper_length_mm", y="bill_length_mm", col="sex")
g.set_axis_labels("Flipper length (mm)", "Bill length (mm)")
plt.show()

relplot() 함수의 인수 col과 row에 변수를 지정하는 것으로 위 플롯을 확장할 수 있습니다. 다음 코드는 데이터 tips의 변수 sex와 time에 의해 다중 플롯을 작성한 것입니다.

g=sns.relplot(data=tips, x="total_bill", y="tip", col="sex", row="time")
plt.show()

위와 같은 figure-level 함수에 다중 플롯을 작성하기 위해 FacetGrid() 함수와 map() 함수를 사용할 수 있습니다.

g=sns.FacetGrid(tips, col="time", row="sex")
g.map(sns.scatterplot, "total_bill", "tip")
g.set_axis_labels("Total", "Tip")
plt.show()

댓글