기본 콘텐츠로 건너뛰기

pandas_ta를 적용한 통계적 인덱스 지표

[Linear Algebra] 동차선형결합(Homogeneous Linear Combination)

동차 선형결합(Homogeneous Linear Combination)

동차선형결합(Homogeneous Linear Combination)은 선형 결합에서 상수 벡터가 0 벡터인 경우입니다. 즉, 표준 행렬 A와 변수 벡터 x 사이에 식 1이 성립합니다.

Ax = 0(식 1)

동차 선형 결합에서 갖는 해는 두 종류로 구분할 수 있습니다.

  • 자명한해(trivial solution): 유일한 해를 가지는 동차선형결합
  • 자명하지 않은 해(nontrivial solution): 다양한 해를 가지는 동차선형결합

그러므로 동차 선형결합에서 최소 한개 이상의 자유변수(Free variable)를 가진다면 하나 이상의 다양한 해를 가지는 것을 의미하는 것으로 자명하지 않은 해(nontrivial solution)를 가지는 시스템이 됩니다.

예 1)

다음은 동차 선형결합입니다. 이 결합의 해를 계산해봅니다.

\begin{align} 3x_1 + 5x_2 - 4x_3 &= 0\\ -3x_1 - 2x_2 + 4x_3 &= 0\\  6x_1 + x_2 - 8x_3 &= 0\end{align}

위 각 식의 계수들을 행렬로 표현하는 표준행렬(A)을 다음과 같습니다. 위 식의 수와 각 식의 계수의 수가 같습니다. 즉 다음 결과와 같이 표준행렬(A)은 정방행렬입니다. 이 행렬의 역행렬 존재 여부를 판단하기 위해 행렬식을 조사해 봅니다.

A=np.array([[3, 5, -4],[-3, -2, 4],[6, 1, 8]])
print(A)
[[ 3  5 -4]
 [-3 -2  4]
 [ 6  1  8]]
la.det(A)
144.0

행렬식이 0이 아니므로 가역행렬입니다. 즉, 역행렬에 의한 각 변수의 해를 계산할 수 있습니다. 이 경우 즉, 표준행렬이 가역행렬인 경우 그 해는 numpy.linalg.solve() 함수로 계산할 수 있습니다.

b=np.array([[0],[0],[0]])
print(la.solve(A, b))
[[0.]
 [0.]
 [0.]]

세 개의 미지수의 해는 모두 0입니다. 즉, 유일한 해인 자명한 해를 가집니다. 이 결과는 기약행사다리꼴을 적용한 결과와 같습니다.

Ab=np.c_[A,b]
print(Ab)
[[ 3  5 -4  0]
 [-3 -2  4  0]
 [ 6  1  8  0]]
Matrix(Ab).rref()
(Matrix([
 [1, 0, 0, 0],
 [0, 1, 0, 0],
 [0, 0, 1, 0]]),
 (0, 1, 2))

댓글

이 블로그의 인기 게시물

[Linear Algebra] 유사변환(Similarity transformation)

유사변환(Similarity transformation) n×n 차원의 정방 행렬 A, B 그리고 가역 행렬 P 사이에 식 1의 관계가 성립하면 행렬 A와 B는 유사행렬(similarity matrix)이 되며 행렬 A를 가역행렬 P와 B로 분해하는 것을 유사 변환(similarity transformation) 이라고 합니다. $$\tag{1} A = PBP^{-1} \Leftrightarrow P^{-1}AP = B $$ 식 2는 식 1의 양변에 B의 고유값을 고려한 것입니다. \begin{align}\tag{식 2} B - \lambda I &= P^{-1}AP – \lambda P^{-1}P\\ &= P^{-1}(AP – \lambda P)\\ &= P^{-1}(A - \lambda I)P \end{align} 식 2의 행렬식은 식 3과 같이 정리됩니다. \begin{align} &\begin{aligned}\textsf{det}(B - \lambda I ) & = \textsf{det}(P^{-1}(AP – \lambda P))\\ &= \textsf{det}(P^{-1}) \textsf{det}((A – \lambda I)) \textsf{det}(P)\\ &= \textsf{det}(P^{-1}) \textsf{det}(P) \textsf{det}((A – \lambda I))\\ &= \textsf{det}(A – \lambda I)\end{aligned}\\ &\begin{aligned}\because \; \textsf{det}(P^{-1}) \textsf{det}(P) &= \textsf{det}(P^{-1}P)\\ &= \textsf{det}(I)\end{aligned}\end{align} 유사행렬의 특성 유사행렬인 두 정방행렬 A와 B는 'A ~ B' 와 같...

[sympy] Sympy객체의 표현을 위한 함수들

Sympy객체의 표현을 위한 함수들 General simplify(x): 식 x(sympy 객체)를 간단히 정리 합니다. import numpy as np from sympy import * x=symbols("x") a=sin(x)**2+cos(x)**2 a $\sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}$ simplify(a) 1 simplify(b) $\frac{x^{3} + x^{2} - x - 1}{x^{2} + 2 x + 1}$ simplify(b) x - 1 c=gamma(x)/gamma(x-2) c $\frac{\Gamma\left(x\right)}{\Gamma\left(x - 2\right)}$ simplify(c) $\displaystyle \left(x - 2\right) \left(x - 1\right)$ 위의 예들 중 객체 c의 감마함수(gamma(x))는 확률분포 등 여러 부분에서 사용되는 표현식으로 다음과 같이 정의 됩니다. 감마함수는 음이 아닌 정수를 제외한 모든 수에서 정의됩니다. 식 1과 같이 자연수에서 감마함수는 factorial(!), 부동소수(양의 실수)인 경우 적분을 적용하여 계산합니다. $$\tag{식 1}\Gamma(n) =\begin{cases}(n-1)!& n:\text{자연수}\\\int^\infty_0x^{n-1}e^{-x}\,dx& n:\text{부동소수}\end{cases}$$ x=symbols('x') gamma(x).subs(x,4) $\displaystyle 6$ factorial 계산은 math.factorial() 함수를 사용할 수 있습니다. import math math.factorial(3) 6 a=gamma(x).subs(x,4.5) a.evalf(3) 11.6 simpilfy() 함수의 알고리즘은 식에서 공통사항을 찾아 정리하...

유리함수 그래프와 점근선 그리기

내용 유리함수(Rational Function) 점근선(asymptote) 유리함수 그래프와 점근선 그리기 유리함수(Rational Function) 유리함수는 분수형태의 함수를 의미합니다. 예를들어 다음 함수는 분수형태의 유리함수입니다. $$f(x)=\frac{x^{2} - 1}{x^{2} + x - 6}$$ 분수의 경우 분모가 0인 경우 정의할 수 없습니다. 이와 마찬가지로 유리함수 f(x)의 정의역은 분모가 0이 아닌 부분이어야 합니다. 그러므로 위함수의 정의역은 분모가 0인 부분을 제외한 부분들로 구성됩니다. sympt=solve(denom(f), a); asympt [-3, 2] $$-\infty \lt x \lt -3, \quad -3 \lt x \lt 2, \quad 2 \lt x \lt \infty$$ 이 정의역을 고려해 그래프를 작성을 위한 사용자 정의함수는 다음과 같습니다. def validX(x, f, symbol): ① a=[] b=[] for i in x: try: b.append(float(f.subs(symbol, i))) a.append(i) except: pass return(a, b) #x는 임의로 지정한 정의역으로 불연속선점을 기준으로 구분된 몇개의 구간으로 전달할 수 있습니다. #그러므로 인수 x는 2차원이어야 합니다. def RationalPlot(x, f, sym, dp=100): fig, ax=plt.subplots(dpi=dp) # ② for k in x: #③ x4, y4=validX(k, f, sym) ax.plot(x4, y4) ax.spines['left'].set_position(('data', 0)) ax.spines['right...