기본 콘텐츠로 건너뛰기

벡터와 행렬에 관련된 그림들

[data analysis] 최대우도추정(Maximum likelihood estimation)

최대우도추정(Maximum likelihood estimation)

회귀계수를 추정하기 위해 사용된 최소자승법은 최대우도추정을 기반으로 합니다.

우도(likelihood)는 사건이 특정 조건에서 발생할 수 있는 확률입니다. 최대우도추정량은 각 사건의 우도가 최대가 되게 하는 통계 추정량을 의미하는 것으로 최소 제곱법에 의한 모델의 모수와 분산이 최대우도 추정량이 됩니다.

설명변수와 반응변수의 관계를 나타내는 회귀모델은 다양한 식으로 나타낼 수 있습니다(회귀분석(Regression analysis)의 정의와 가정 참조). 그 중 최소제곱에 의한 회귀모델은 관측값과 추정값 사이의 차이인 오차를 최소로 할 수 있는 최적의 회귀선입니다. 회귀모델의 최종적인 목적은 오차의 최소에 있습니다. 이것은 각 샘플에서 발생할 수 있는 오차들의 중에서 최소제곱 모델에 의한 오차(추정치)의 발생확률이 가장 높을 것으로 기대할 수 있습니다. 또한 회귀분석의 기본가정에 의해 샘플 당 발생할 오차들의 분포는 정규분포를 따르므로 최대우도의 추정치는 평균이 됩니다. 최대우도를 발생하는 OLS 모델에 의한 계수와 분산이 최대우도추정량이 됩니다. 그 추정량의 조건하에 최대우도는 식 1과 같이 정규분포함수로 정의할 수 있습니다. 각 샘플의 오차분포는 독립적이므로 전체샘플의 우도는 각각의 곱으로 계산합니다.

$$L(\beta, \sigma^2; y, X)=(2\pi \sigma^2)^{-\frac{n}{2}}\exp\left(-\frac{1}{2\sigma^2}\sum^n_{i=1}(y_i - x_i\beta)^2\right)$$ (식 1)

일반적으로 우도 함수를 로그화하여 로그우도함수로 나타냅니다(식 2).

$$\log\left(L(\beta, \sigma^2; y, X)\right)=-\frac{n}{2}(2\pi \sigma^2)- \frac{1}{2\sigma^2}\sum^n_{i=1}(y_i - x_i\beta)^2$$ (식 2)

결과적으로 최대우도가 증가한다는 것은 모델에 의한 추정치가 관측치일 가능성이 증가한다는 것으로 모델의 적합도를 나타냅니다.

식 2로 계산되는 로그최대우도는 statsmodels.formula.api.ols() 클래스에 의한 회귀분석의 결과로 확인할 수 있습니다.

예 1)

kospi 지수의 일일 주가 자료중 시가(Open)을 설명변수로 하여 종가(Close)를 추정하는 회귀모델을 작성합니다.

Open Close
0 2874.50 2944.45
1 2943.67 2990.57
2 2993.34 2968.21

다음 코드는 분석을 위한 자료를 호출하기 위한 것입니다.

st=pd.Timestamp(2021,1, 1)
et=pd.Timestamp(2024, 5, 10)
kos=fdr.DataReader('KS11',st, et)[["Open","Close"]]
kos.index=range(len(kos))
kos.head(3).round(2) 
Open Close
02201.212175.17
12192.582176.46
22154.972155.07

위 자료를 표준화합니다.

X=kos.values[:,0].reshape(-1,1)
y=kos.values[:,1].reshape(-1,1)
from sklearn.preprocessing import StandardScaler 
#독립변수 정규화(표준화)
xScaler=StandardScaler().fit(X)
X_n=xScaler.transform(X)
#반응변수 정규화(표준화)
yScaler=StandardScaler().fit(y)
y_n=yScaler.transform(y))

statsmodels.api.OLS() 클래스를 적용하여 생성한 회귀모델의 메서드 summary()는 이 모델의 결과를 나타내고 있습니다. 이 결과는 3개의 표로 출력되며 모든 내용은 단순회귀분석(Simple regression) 예 1에서 확인할 할 수 있습니다. 다음 코드와 같이 reg.summary()의 .tables 속성을 사용하여 각 표를 분리하여 나타낼 수 있습니다.

import statsmodels.api as sm
X_n0=sm.add_constant(X_n)
reg=sm.OLS(y_n, X_n0).fit()
re=reg.summary()
re.tables[0]
OLS Regression Results
Dep. Variable: y R-squared: 0.994
Model: OLS Adj. R-squared: 0.994
Method: Least Squares F-statistic: 1.411e+05
Date: Wed, 04 Sep 2024 Prob (F-statistic): 0.00
Time: 12:34:55 Log-Likelihood: 955.08
No. Observations: 827 AIC: -1906.
Df Residuals: 825 BIC: -1897.
Df Model: 1
Covariance Type: nonrobust

위 결과에서 Log-Likelihood는 952.04입니다. 다음 코드는 식 2를 사용하여 이 값을 다시 계산한 것입니다.

OLS() 클래스에 의해 생성된 모델의 속성 .res는 모델 설정에 사용된 각 샘플의 잔차를 나타냅니다.

n,p=X_n0.shape
res=reg.resid
mu, v=np.mean(res), np.var(res)
log_lh=(-n/2)*np.log(2*np.pi*v)-1/(2*v)*np.sum(res**2)
round(log_lh, 2)
955.08

위 우도함수는 오차의 정규분포함수이므로 scipy.stats.norm.pdf() 함수를 사용하여 계산할 수 있습니다.

p=stats.norm.pdf(res, mu, np.std(res))
np.sum(np.log(p)).round(2)
955.08

댓글

이 블로그의 인기 게시물

[Linear Algebra] 유사변환(Similarity transformation)

유사변환(Similarity transformation) n×n 차원의 정방 행렬 A, B 그리고 가역 행렬 P 사이에 식 1의 관계가 성립하면 행렬 A와 B는 유사행렬(similarity matrix)이 되며 행렬 A를 가역행렬 P와 B로 분해하는 것을 유사 변환(similarity transformation) 이라고 합니다. $$\tag{1} A = PBP^{-1} \Leftrightarrow P^{-1}AP = B $$ 식 2는 식 1의 양변에 B의 고유값을 고려한 것입니다. \begin{align}\tag{식 2} B - \lambda I &= P^{-1}AP – \lambda P^{-1}P\\ &= P^{-1}(AP – \lambda P)\\ &= P^{-1}(A - \lambda I)P \end{align} 식 2의 행렬식은 식 3과 같이 정리됩니다. \begin{align} &\begin{aligned}\textsf{det}(B - \lambda I ) & = \textsf{det}(P^{-1}(AP – \lambda P))\\ &= \textsf{det}(P^{-1}) \textsf{det}((A – \lambda I)) \textsf{det}(P)\\ &= \textsf{det}(P^{-1}) \textsf{det}(P) \textsf{det}((A – \lambda I))\\ &= \textsf{det}(A – \lambda I)\end{aligned}\\ &\begin{aligned}\because \; \textsf{det}(P^{-1}) \textsf{det}(P) &= \textsf{det}(P^{-1}P)\\ &= \textsf{det}(I)\end{aligned}\end{align} 유사행렬의 특성 유사행렬인 두 정방행렬 A와 B는 'A ~ B' 와 같...

[sympy] Sympy객체의 표현을 위한 함수들

Sympy객체의 표현을 위한 함수들 General simplify(x): 식 x(sympy 객체)를 간단히 정리 합니다. import numpy as np from sympy import * x=symbols("x") a=sin(x)**2+cos(x)**2 a $\sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}$ simplify(a) 1 simplify(b) $\frac{x^{3} + x^{2} - x - 1}{x^{2} + 2 x + 1}$ simplify(b) x - 1 c=gamma(x)/gamma(x-2) c $\frac{\Gamma\left(x\right)}{\Gamma\left(x - 2\right)}$ simplify(c) $\displaystyle \left(x - 2\right) \left(x - 1\right)$ 위의 예들 중 객체 c의 감마함수(gamma(x))는 확률분포 등 여러 부분에서 사용되는 표현식으로 다음과 같이 정의 됩니다. 감마함수는 음이 아닌 정수를 제외한 모든 수에서 정의됩니다. 식 1과 같이 자연수에서 감마함수는 factorial(!), 부동소수(양의 실수)인 경우 적분을 적용하여 계산합니다. $$\tag{식 1}\Gamma(n) =\begin{cases}(n-1)!& n:\text{자연수}\\\int^\infty_0x^{n-1}e^{-x}\,dx& n:\text{부동소수}\end{cases}$$ x=symbols('x') gamma(x).subs(x,4) $\displaystyle 6$ factorial 계산은 math.factorial() 함수를 사용할 수 있습니다. import math math.factorial(3) 6 a=gamma(x).subs(x,4.5) a.evalf(3) 11.6 simpilfy() 함수의 알고리즘은 식에서 공통사항을 찾아 정리하...

sympy.solvers로 방정식해 구하기

sympy.solvers로 방정식해 구하기 대수 방정식을 해를 계산하기 위해 다음 함수를 사용합니다. sympy.solvers.solve(f, *symbols, **flags) f=0, 즉 동차방정식에 대해 지정한 변수의 해를 계산 f : 식 또는 함수 symbols: 식의 해를 계산하기 위한 변수, 변수가 하나인 경우는 생략가능(자동으로 인식) flags: 계산 또는 결과의 방식을 지정하기 위한 인수들 dict=True: {x:3, y:1}같이 사전형식, 기본값 = False set=True :{(x,3),(y,1)}같이 집합형식, 기본값 = False ratioal=True : 실수를 유리수로 반환, 기본값 = False positive=True: 해들 중에 양수만을 반환, 기본값 = False 예 $x^2=1$의 해를 결정합니다. solve() 함수에 적용하기 위해서는 다음과 같이 식의 한쪽이 0이 되는 형태인 동차식으로 구성되어야 합니다. $$x^2-1=0$$ import numpy as np from sympy import * x = symbols('x') solve(x**2-1, x) [-1, 1] 위 식은 계산 과정은 다음과 같습니다. $$\begin{aligned}x^2-1=0 \rightarrow (x+1)(x-1)=0 \\ x=1 \; \text{or}\; -1\end{aligned}$$ 예 $x^4=1$의 해를 결정합니다. solve() 함수의 인수 set=True를 지정하였으므로 결과는 집합(set)형으로 반환됩니다. eq=x**4-1 solve(eq, set=True) ([x], {(-1,), (-I,), (1,), (I,)}) 위의 경우 I는 복소수입니다.즉 위 결과의 과정은 다음과 같습니다. $$x^4-1=(x^2+1)(x+1)(x-1)=0 \rightarrow x=\pm \sqrt{-1}, \; \pm 1=\pm i,\; \pm1$$ 실수...