기본 콘텐츠로 건너뛰기

pandas_ta를 적용한 통계적 인덱스 지표

[numpy]랜덤수 생성을 위한 numpy 함수들

랜덤수 생성을 위한 numpy 함수들

numpy 라이브러리의 random 클래스하에서 랜덤수를 생성하는 다양한 함수를 제공합니다. 이 결과 역시 배열 객체입니다.

random 함수들 r: 행의 수, c: 열의 수
[a, b) = a≤ x < b
함수내용
np.random.rand(r, c)[0, 1) 사이의 균일 분포를 따르는 랜덤수 생성
지정한 차원(행×열)의 배열객체를 반환
양의 정수 입력으로 1차원 랜덤 벡터 생성
np.random.randn(r,c)표준정규분포에 부합하는 랜덤수 생성
지정한 차원(행×열)의 배열객체를 반환
양의 정수 입력으로 1차원 랜덤 벡터 생성
np.random.sample((r,c))[0, 1)지정한 크기(차원)의 랜덤수를 생성
위의 함수들과 달리 인수를 튜플 형식으로 전달
지정한 차원(행×열)의 배열객체를 반환
양의 정수 입력으로 1차원 랜덤 벡터 생성
np.random.randint(s, e, (r,c))[s, e)의 범위의 정수들을 대상으로 랜덤수를 생성
start: 시작 수, end:마지막 수로 모두 정수
지정한 차원(행×열)의 배열객체를 반환
양의 정수 입력으로 1차원 랜덤 벡터 생성

다음 코드는 rand(), randn() 함수를 사용하여 생성한 각각 1차원 벡터와 그 객체의 분포를 작성하였습니다.

import numpy as np 
from numpy import random
import matplotlib.pyplot as plt
plt.rcParams['font.family'] ='NanumGothic'
random.seed(2)
x=random.rand(1000)
print(x[:3], x.shape)
[0.4359949  0.02592623 0.54966248] (1000,)
plt.figure(figsize=(3,2))
plt.hist(x, bins=10, rwidth=0.6, density=True)
plt.xlabel("랜덤수들의 계급")
plt.ylabel("density")
plt.show()

위 결과는 생성된 랜덤수들로 그룹(계급)화하여 작성한 히스토그램입니다. 각 계급에 대응하는 밀도(≈ 확률)의 변화가 매우 작습니다. 즉, 균일 분포를 따른다고 할 수 있습니다.

위 코드에서 사용한 random.seed()는 다음과 같은 이유로 적용한 것입니다.

  • numpy.random.seed(정수)
    • numpy.random 모듈로 부터 랜덤수 생성은 코드 실행시 마다 다른 수를 반환하는데 같은 수가 필요할 경우 이 함수와 함께 코드를 실행합니다. 이 함수에 전달한 정수하에서는 같은 알고리즘으로 랜덤수를 생성합니다.
random.seed(3)
y=random.randn(1000)
print(y[:3], y.shape)
[1.78862847 0.43650985 0.09649747] (1000,)
plt.figure(figsize=(3,2))
plt.hist(y, bins=10, rwidth=0.6, density=True)
plt.xlabel("랜덤수들의 계급")
plt.ylabel("density")
plt.show()

위 결과는 정규분포를 나타냅니다. 다음 코드들은 행의수(r)과 열의 수(c)를 전달하여 지정한 차원의 랜덤 객체를 생성합니다.

np.random.rand(2,2)
array([[0.15929645, 0.29190401],
       [0.79410849, 0.39557435]])
np.random.randn(2,2)
array([[-0.86682945,  0.1903874 ],
       [-0.27194554, -1.40526577]])
np.random.sample((2,2))
array([[0.84179387, 0.76751748],
       [0.45750306, 0.63112318]])
np.random.randint(1, 10, 3)
array([4, 4, 5])
np.random.randint(10, 20, (2,3))
array([[17, 10, 16],
       [12, 13, 17]])

댓글

이 블로그의 인기 게시물

[Linear Algebra] 유사변환(Similarity transformation)

유사변환(Similarity transformation) n×n 차원의 정방 행렬 A, B 그리고 가역 행렬 P 사이에 식 1의 관계가 성립하면 행렬 A와 B는 유사행렬(similarity matrix)이 되며 행렬 A를 가역행렬 P와 B로 분해하는 것을 유사 변환(similarity transformation) 이라고 합니다. $$\tag{1} A = PBP^{-1} \Leftrightarrow P^{-1}AP = B $$ 식 2는 식 1의 양변에 B의 고유값을 고려한 것입니다. \begin{align}\tag{식 2} B - \lambda I &= P^{-1}AP – \lambda P^{-1}P\\ &= P^{-1}(AP – \lambda P)\\ &= P^{-1}(A - \lambda I)P \end{align} 식 2의 행렬식은 식 3과 같이 정리됩니다. \begin{align} &\begin{aligned}\textsf{det}(B - \lambda I ) & = \textsf{det}(P^{-1}(AP – \lambda P))\\ &= \textsf{det}(P^{-1}) \textsf{det}((A – \lambda I)) \textsf{det}(P)\\ &= \textsf{det}(P^{-1}) \textsf{det}(P) \textsf{det}((A – \lambda I))\\ &= \textsf{det}(A – \lambda I)\end{aligned}\\ &\begin{aligned}\because \; \textsf{det}(P^{-1}) \textsf{det}(P) &= \textsf{det}(P^{-1}P)\\ &= \textsf{det}(I)\end{aligned}\end{align} 유사행렬의 특성 유사행렬인 두 정방행렬 A와 B는 'A ~ B' 와 같...

[sympy] Sympy객체의 표현을 위한 함수들

Sympy객체의 표현을 위한 함수들 General simplify(x): 식 x(sympy 객체)를 간단히 정리 합니다. import numpy as np from sympy import * x=symbols("x") a=sin(x)**2+cos(x)**2 a $\sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}$ simplify(a) 1 simplify(b) $\frac{x^{3} + x^{2} - x - 1}{x^{2} + 2 x + 1}$ simplify(b) x - 1 c=gamma(x)/gamma(x-2) c $\frac{\Gamma\left(x\right)}{\Gamma\left(x - 2\right)}$ simplify(c) $\displaystyle \left(x - 2\right) \left(x - 1\right)$ 위의 예들 중 객체 c의 감마함수(gamma(x))는 확률분포 등 여러 부분에서 사용되는 표현식으로 다음과 같이 정의 됩니다. 감마함수는 음이 아닌 정수를 제외한 모든 수에서 정의됩니다. 식 1과 같이 자연수에서 감마함수는 factorial(!), 부동소수(양의 실수)인 경우 적분을 적용하여 계산합니다. $$\tag{식 1}\Gamma(n) =\begin{cases}(n-1)!& n:\text{자연수}\\\int^\infty_0x^{n-1}e^{-x}\,dx& n:\text{부동소수}\end{cases}$$ x=symbols('x') gamma(x).subs(x,4) $\displaystyle 6$ factorial 계산은 math.factorial() 함수를 사용할 수 있습니다. import math math.factorial(3) 6 a=gamma(x).subs(x,4.5) a.evalf(3) 11.6 simpilfy() 함수의 알고리즘은 식에서 공통사항을 찾아 정리하...

유리함수 그래프와 점근선 그리기

내용 유리함수(Rational Function) 점근선(asymptote) 유리함수 그래프와 점근선 그리기 유리함수(Rational Function) 유리함수는 분수형태의 함수를 의미합니다. 예를들어 다음 함수는 분수형태의 유리함수입니다. $$f(x)=\frac{x^{2} - 1}{x^{2} + x - 6}$$ 분수의 경우 분모가 0인 경우 정의할 수 없습니다. 이와 마찬가지로 유리함수 f(x)의 정의역은 분모가 0이 아닌 부분이어야 합니다. 그러므로 위함수의 정의역은 분모가 0인 부분을 제외한 부분들로 구성됩니다. sympt=solve(denom(f), a); asympt [-3, 2] $$-\infty \lt x \lt -3, \quad -3 \lt x \lt 2, \quad 2 \lt x \lt \infty$$ 이 정의역을 고려해 그래프를 작성을 위한 사용자 정의함수는 다음과 같습니다. def validX(x, f, symbol): ① a=[] b=[] for i in x: try: b.append(float(f.subs(symbol, i))) a.append(i) except: pass return(a, b) #x는 임의로 지정한 정의역으로 불연속선점을 기준으로 구분된 몇개의 구간으로 전달할 수 있습니다. #그러므로 인수 x는 2차원이어야 합니다. def RationalPlot(x, f, sym, dp=100): fig, ax=plt.subplots(dpi=dp) # ② for k in x: #③ x4, y4=validX(k, f, sym) ax.plot(x4, y4) ax.spines['left'].set_position(('data', 0)) ax.spines['right...