기본 콘텐츠로 건너뛰기

[matplotlib] 등고선(Contour)

[python] 보수(complement)

보수(complement)

컴퓨터에서 음수를 직접적으로 표현할 수 없기 때문에 부호 비트를 지정하여 양수에 대한 음수는 2의 보수(tow's complement)를 사용하여 나타낼 수 있습니다.

보수는 어떤수를 보충하여 완전수를 만들게 하는 수로 1의 보수와 2의 보수 방법이 있으며 어떤수에 대응하는 음수의 이진수 표현은 2의 보수 방법을 적용합니다.

  • 1의 보수 ⇒ 값의 반전, 즉 0 → 1, 1 → 0
  • 예를 들어 4비트에서 완전수는 1111(2)이 됩니다. 그러므로 0010(2)에 1의 보수를 더하면 다음과 같이 완전수가 됩니다.
0010
 + 1101 (1의 보수)
1111 (완전수)
  • 2의 보수⇒ 1의 보수 결과 + 1(2)
  • 예를 들어 위의 1의 보수법에 의한 결과인 1101(2)에 1(2)를 더하면 1110(2)이 됩니다. 기준이 되는 최왼쪽에 있는 비트는 부호를 나타내는 것으로 1이므로 음수임을 나타냅니다.
  • 이 음수값을 직접적으로 십진수로 전환할 수 없습니다. 그러므로 이 값을 알기 위해서는 다시 2의 보수를 결정합니다.
1110
1의 보수 → 0001
2의 보수 + 0001
2 ⇐ 0010

위 결과 1110(2)의 부호변환 결과는 2이므로 -2가 됩니다.

예)

16비트를 기준으로 2의 보수를 사용하여 십진수 7의 음수인 이진수를 결정해봅니다.

00000111
7에 대한 2의 보수: 11111001 ⇒ -7
-7의 2진수를 십진수로 확인하기 위해서는 다시 2의 보수를 적용합니다.
-7에 대한 2의 보수: 00000111 ⇒ 7

numpy 패키지의 binary_repr()함수를 적용하여 확인할 수 있습니다.

from numpy import binary_repr
binary_repr(-7, width=16)
'1111111111111001'

예)

8비트를 기준으로 2의 보수를 사용하여 127(10)의 음수인 이진수를 결정해봅니다.

127: 01111111
2의 보수: 10000001 ⇒ -127
binary_repr(-127, width=8)
'10000001'

댓글

이 블로그의 인기 게시물

[Linear Algebra] 유사변환(Similarity transformation)

유사변환(Similarity transformation) n×n 차원의 정방 행렬 A, B 그리고 가역 행렬 P 사이에 식 1의 관계가 성립하면 행렬 A와 B는 유사행렬(similarity matrix)이 되며 행렬 A를 가역행렬 P와 B로 분해하는 것을 유사 변환(similarity transformation) 이라고 합니다. (1)A=PBP1P1AP=B 식 2는 식 1의 양변에 B의 고유값을 고려한 것입니다. (식 2)BλI=P1APλP1P=P1(APλP)=P1(AλI)P 식 2의 행렬식은 식 3과 같이 정리됩니다. det(BλI)=det(P1(APλP))=det(P1)det((AλI))det(P)=det(P1)det(P)det((AλI))=det(AλI)det(P1)det(P)=det(P1P)=det(I) 유사행렬의 특성 유사행렬인 두 정방행렬 A와 B는 'A ~ B' 와 같...

[sympy] Sympy객체의 표현을 위한 함수들

Sympy객체의 표현을 위한 함수들 General simplify(x): 식 x(sympy 객체)를 간단히 정리 합니다. import numpy as np from sympy import * x=symbols("x") a=sin(x)**2+cos(x)**2 a sin2(x)+cos2(x) simplify(a) 1 simplify(b) x3+x2x1x2+2x+1 simplify(b) x - 1 c=gamma(x)/gamma(x-2) c Γ(x)Γ(x2) simplify(c) (x2)(x1) 위의 예들 중 객체 c의 감마함수(gamma(x))는 확률분포 등 여러 부분에서 사용되는 표현식으로 다음과 같이 정의 됩니다. 감마함수는 음이 아닌 정수를 제외한 모든 수에서 정의됩니다. 식 1과 같이 자연수에서 감마함수는 factorial(!), 부동소수(양의 실수)인 경우 적분을 적용하여 계산합니다. (식 1)Γ(n)={(n1)!n:자연수0xn1exdxn:부동소수 x=symbols('x') gamma(x).subs(x,4) 6 factorial 계산은 math.factorial() 함수를 사용할 수 있습니다. import math math.factorial(3) 6 a=gamma(x).subs(x,4.5) a.evalf(3) 11.6 simpilfy() 함수의 알고리즘은 식에서 공통사항을 찾아 정리하...

sympy.solvers로 방정식해 구하기

sympy.solvers로 방정식해 구하기 대수 방정식을 해를 계산하기 위해 다음 함수를 사용합니다. sympy.solvers.solve(f, *symbols, **flags) f=0, 즉 동차방정식에 대해 지정한 변수의 해를 계산 f : 식 또는 함수 symbols: 식의 해를 계산하기 위한 변수, 변수가 하나인 경우는 생략가능(자동으로 인식) flags: 계산 또는 결과의 방식을 지정하기 위한 인수들 dict=True: {x:3, y:1}같이 사전형식, 기본값 = False set=True :{(x,3),(y,1)}같이 집합형식, 기본값 = False ratioal=True : 실수를 유리수로 반환, 기본값 = False positive=True: 해들 중에 양수만을 반환, 기본값 = False 예 x2=1의 해를 결정합니다. solve() 함수에 적용하기 위해서는 다음과 같이 식의 한쪽이 0이 되는 형태인 동차식으로 구성되어야 합니다. x21=0 import numpy as np from sympy import * x = symbols('x') solve(x**2-1, x) [-1, 1] 위 식은 계산 과정은 다음과 같습니다. x21=0(x+1)(x1)=0x=1or1x4=1의 해를 결정합니다. solve() 함수의 인수 set=True를 지정하였으므로 결과는 집합(set)형으로 반환됩니다. eq=x**4-1 solve(eq, set=True) ([x], {(-1,), (-I,), (1,), (I,)}) 위의 경우 I는 복소수입니다.즉 위 결과의 과정은 다음과 같습니다. x41=(x2+1)(x+1)(x1)=0x=±1,±1=±i,±1 실수...