기본 콘텐츠로 건너뛰기

pandas_ta를 적용한 통계적 인덱스 지표

[data analysis] 원-핫 인코딩을 위한 함수들

원-핫 인코딩을 위한 함수들

pandas.get_dummies(x, prefix=None, dummy_na=False, dtype=None)
  • 전달되는 데이터인 x는 1차원 Array, pandas Series, 그리고 DataFrame 모두 가능
  • 데이터의 고유값(unique value)에 대응하는 클래스를 생성하여 값에 적합한 클래스에 True, 나머지 클래스에 False를 할당(one-hot encoding)
    • True와 False로 표시가 기본값
    • 인수 dtype = "int": True → 1, False → 0
  • dummy_na = True: 데이터의 포함된 Na를 포함
pd.get_dummies(['A', 'A', 'C', 'C', 'B'])
A B C
0 True False False
1 True False False
2 False False True
3 False False True
4 False True False
pd.get_dummies(['A', 'A', 'C', 'C', 'B'], dtype='int')
A B C
0 1 0 0
1 1 0 0
2 0 0 1
3 0 0 1
4 0 1 0
y=pd.DataFrame([['A', 'A', 'C', 'C', 'B'],['B', 'A', 'C', 'A', 'B']])
pd.get_dummies(y)
0_A 0_B 1_A 2_C 3_A 3_C 4_B
0 True False True True False True True
1 False True True True True False True
sklearn.preprocessing.OneHotEncoder()
  • 특정한 값에 해당하는 인덱스에 1, 나머지는 0을 할당하는 방식으로 데이터 변환하는 클래스
  • 전달하는 인수는 2차원 이상의 배열 구조 이어야 합니다.
  • .fit(data): estimator 생성하는 메서드
  • .transform(data): 변환된 결과를 생성하는 메서드. 이 결과는 자료형이 지정되지 않은 상태로 .toarray() 메소드에 의해 array 형으로 전환한 후 나타냄
  • 위의 두 메소드를 결합하여 .fit_transform(data)로 처리할 수 있습니다.
  • .inverse_transforme(변환된 data): 원시데이터로 환원된 결과를 반환하는 메소드
  • .categories_ : data의 클래스(목록)를 즉, 각 변수의 고유값을 반환하는 속성
torch.functional.one_hot(tensor, num_classes=-1)
  • num_classes는 원-핫 인코딩을 위한 클래스 수(컬럼수)
    • 이 함수 내부적으로 생성되는 클래스 수는 0~tensor 객체의 최대값
    • 예를 들어 month의 경우 객체의 최대값은 12이므로 실제적으로 생성되는 클래스 수는 [0, 12]로 13개 입니다.
    • num_classes의 기본값은 -1이고 이 경우는 위 과정이 자동으로 계산됩니다.
    • 수동으로 지정하기 위해서는 위의 자동지정된 값보다 커야 합니다. 즉, month의 경우 13이상이어야 합니다.
    • 여러개의 변수(열)을 동시에 변환할 경우 그 객체의 최대값을 기본으로 하므로 각 열의 클래스수는 동일해집니다. month의 경우 12개의 클래스가 맞지만 한개의 클래스가 더 생성됩니다. 그러나 여분이 되는 이 클래스의 값은 모두 0이므로 계산 결과에 영향에 없습니다. 그러나 메모리 관리 측면에서 불리합니다.
  • 텐서의 행 단위로 변환합니다.

댓글

이 블로그의 인기 게시물

[Linear Algebra] 유사변환(Similarity transformation)

유사변환(Similarity transformation) n×n 차원의 정방 행렬 A, B 그리고 가역 행렬 P 사이에 식 1의 관계가 성립하면 행렬 A와 B는 유사행렬(similarity matrix)이 되며 행렬 A를 가역행렬 P와 B로 분해하는 것을 유사 변환(similarity transformation) 이라고 합니다. $$\tag{1} A = PBP^{-1} \Leftrightarrow P^{-1}AP = B $$ 식 2는 식 1의 양변에 B의 고유값을 고려한 것입니다. \begin{align}\tag{식 2} B - \lambda I &= P^{-1}AP – \lambda P^{-1}P\\ &= P^{-1}(AP – \lambda P)\\ &= P^{-1}(A - \lambda I)P \end{align} 식 2의 행렬식은 식 3과 같이 정리됩니다. \begin{align} &\begin{aligned}\textsf{det}(B - \lambda I ) & = \textsf{det}(P^{-1}(AP – \lambda P))\\ &= \textsf{det}(P^{-1}) \textsf{det}((A – \lambda I)) \textsf{det}(P)\\ &= \textsf{det}(P^{-1}) \textsf{det}(P) \textsf{det}((A – \lambda I))\\ &= \textsf{det}(A – \lambda I)\end{aligned}\\ &\begin{aligned}\because \; \textsf{det}(P^{-1}) \textsf{det}(P) &= \textsf{det}(P^{-1}P)\\ &= \textsf{det}(I)\end{aligned}\end{align} 유사행렬의 특성 유사행렬인 두 정방행렬 A와 B는 'A ~ B' 와 같...

[sympy] Sympy객체의 표현을 위한 함수들

Sympy객체의 표현을 위한 함수들 General simplify(x): 식 x(sympy 객체)를 간단히 정리 합니다. import numpy as np from sympy import * x=symbols("x") a=sin(x)**2+cos(x)**2 a $\sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}$ simplify(a) 1 simplify(b) $\frac{x^{3} + x^{2} - x - 1}{x^{2} + 2 x + 1}$ simplify(b) x - 1 c=gamma(x)/gamma(x-2) c $\frac{\Gamma\left(x\right)}{\Gamma\left(x - 2\right)}$ simplify(c) $\displaystyle \left(x - 2\right) \left(x - 1\right)$ 위의 예들 중 객체 c의 감마함수(gamma(x))는 확률분포 등 여러 부분에서 사용되는 표현식으로 다음과 같이 정의 됩니다. 감마함수는 음이 아닌 정수를 제외한 모든 수에서 정의됩니다. 식 1과 같이 자연수에서 감마함수는 factorial(!), 부동소수(양의 실수)인 경우 적분을 적용하여 계산합니다. $$\tag{식 1}\Gamma(n) =\begin{cases}(n-1)!& n:\text{자연수}\\\int^\infty_0x^{n-1}e^{-x}\,dx& n:\text{부동소수}\end{cases}$$ x=symbols('x') gamma(x).subs(x,4) $\displaystyle 6$ factorial 계산은 math.factorial() 함수를 사용할 수 있습니다. import math math.factorial(3) 6 a=gamma(x).subs(x,4.5) a.evalf(3) 11.6 simpilfy() 함수의 알고리즘은 식에서 공통사항을 찾아 정리하...

유리함수 그래프와 점근선 그리기

내용 유리함수(Rational Function) 점근선(asymptote) 유리함수 그래프와 점근선 그리기 유리함수(Rational Function) 유리함수는 분수형태의 함수를 의미합니다. 예를들어 다음 함수는 분수형태의 유리함수입니다. $$f(x)=\frac{x^{2} - 1}{x^{2} + x - 6}$$ 분수의 경우 분모가 0인 경우 정의할 수 없습니다. 이와 마찬가지로 유리함수 f(x)의 정의역은 분모가 0이 아닌 부분이어야 합니다. 그러므로 위함수의 정의역은 분모가 0인 부분을 제외한 부분들로 구성됩니다. sympt=solve(denom(f), a); asympt [-3, 2] $$-\infty \lt x \lt -3, \quad -3 \lt x \lt 2, \quad 2 \lt x \lt \infty$$ 이 정의역을 고려해 그래프를 작성을 위한 사용자 정의함수는 다음과 같습니다. def validX(x, f, symbol): ① a=[] b=[] for i in x: try: b.append(float(f.subs(symbol, i))) a.append(i) except: pass return(a, b) #x는 임의로 지정한 정의역으로 불연속선점을 기준으로 구분된 몇개의 구간으로 전달할 수 있습니다. #그러므로 인수 x는 2차원이어야 합니다. def RationalPlot(x, f, sym, dp=100): fig, ax=plt.subplots(dpi=dp) # ② for k in x: #③ x4, y4=validX(k, f, sym) ax.plot(x4, y4) ax.spines['left'].set_position(('data', 0)) ax.spines['right...