기본 콘텐츠로 건너뛰기

[math] 정적분의 특성

[data analysis] 표준화(Standardization)

표준화(Standardization)

평균과 표준편차가 각각 0과 1인 표준정규분포를 따르는 데이터로 전환하는 것으로 회귀분석, 로지스틱회귀분석과 같은 알고리즘에 유용합니다. 식 1과 같이 계산됩니다.

$$x_\text{std}=\frac{x-\mu}{\sigma}$$ (식 1)

sklearn.preprocessing.StandardScaler()클래스와 zscore() 함수를 적용합니다.

sklearn.preprocessing.StandardScaler(x)
  • x는 2차원 배열 객체
  • 자료를 식 1과 같이 표준화시키기 위한 클래스
  • .transform() 메서드를 사용하여 자료 변환.
  • .inverse_transform()메서드로 변환된 값에 대응하는 원시 데이터(raw data)로 환원.
  • 변환에 사용된 평균과 분산은 각각 .mean_, .var_ 속성으로 반환.
scipy.stats.zscore(x, axis=0, ddof=0)
  • 배열, dataframe등의 객체(x)를 지정한 축에 따라 표준화
  • ddof: 자유도를 고려하기 위한 인수로서 '자유도=n-1'인 경우 'ddof=1'이 됩니다.
  • axis=0: 행단위 그러므로 각 열기준으로 표준화
  • axis=1: 열단위 그러므로 각 행기준으로 표준화
import numpy as np 
import pandas as pd 
from sklearn import preprocessing
from scipy import stats
np.random.seed(0)
x=np.random.randint(0, 100, size=(5,3))
print(x)
[[44 47 64]
 [67 67  9]
 [83 21 36]
 [87 70 88]
 [88 12 58]]
xStScaler=preprocessing.StandardScaler().fit(x)
xScale3=xStScaler.transform(x)
print(np.around(xScale3, 3))
[[-1.784  0.153  0.486]
 [-0.407  1.004 -1.57 ]
 [ 0.551 -0.953 -0.561]
 [ 0.79   1.131  1.384]
 [ 0.85  -1.335  0.262]]
mu=np.mean(x, axis=0)
sd=np.std(x, axis=0)
print(np.around((x-mu)/sd,3))
[[-1.784  0.153  0.486]
 [-0.407  1.004 -1.57 ]
 [ 0.551 -0.953 -0.561]
 [ 0.79   1.131  1.384]
 [ 0.85  -1.335  0.262]]
score=stats.zscore(x)
print(score.round(3))
[[-1.784  0.153  0.486]
 [-0.407  1.004 -1.57 ]
 [ 0.551 -0.953 -0.561]
 [ 0.79   1.131  1.384]
 [ 0.85  -1.335  0.262]]

댓글

이 블로그의 인기 게시물

[Linear Algebra] 유사변환(Similarity transformation)

유사변환(Similarity transformation) n×n 차원의 정방 행렬 A, B 그리고 가역 행렬 P 사이에 식 1의 관계가 성립하면 행렬 A와 B는 유사행렬(similarity matrix)이 되며 행렬 A를 가역행렬 P와 B로 분해하는 것을 유사 변환(similarity transformation) 이라고 합니다. $$\tag{1} A = PBP^{-1} \Leftrightarrow P^{-1}AP = B $$ 식 2는 식 1의 양변에 B의 고유값을 고려한 것입니다. \begin{align}\tag{식 2} B - \lambda I &= P^{-1}AP – \lambda P^{-1}P\\ &= P^{-1}(AP – \lambda P)\\ &= P^{-1}(A - \lambda I)P \end{align} 식 2의 행렬식은 식 3과 같이 정리됩니다. \begin{align} &\begin{aligned}\textsf{det}(B - \lambda I ) & = \textsf{det}(P^{-1}(AP – \lambda P))\\ &= \textsf{det}(P^{-1}) \textsf{det}((A – \lambda I)) \textsf{det}(P)\\ &= \textsf{det}(P^{-1}) \textsf{det}(P) \textsf{det}((A – \lambda I))\\ &= \textsf{det}(A – \lambda I)\end{aligned}\\ &\begin{aligned}\because \; \textsf{det}(P^{-1}) \textsf{det}(P) &= \textsf{det}(P^{-1}P)\\ &= \textsf{det}(I)\end{aligned}\end{align} 유사행렬의 특성 유사행렬인 두 정방행렬 A와 B는 'A ~ B' 와 같

[matplotlib] 히스토그램(Histogram)

히스토그램(Histogram) 히스토그램은 확률분포의 그래픽적인 표현이며 막대그래프의 종류입니다. 이 그래프가 확률분포와 관계가 있으므로 통계적 요소를 나타내기 위해 많이 사용됩니다. plt.hist(X, bins=10)함수를 사용합니다. x=np.random.randn(1000) plt.hist(x, 10) plt.show() 위 그래프의 y축은 각 구간에 해당하는 갯수이다. 빈도수 대신 확률밀도를 나타내기 위해서는 위 함수의 매개변수 normed=True로 조정하여 나타낼 수 있다. 또한 매개변수 bins의 인수를 숫자로 전달할 수 있지만 리스트 객체로 지정할 수 있다. 막대그래프의 경우와 마찬가지로 각 막대의 폭은 매개변수 width에 의해 조정된다. y=np.linspace(min(x)-1, max(x)+1, 10) y array([-4.48810153, -3.54351935, -2.59893717, -1.65435499, -0.70977282, 0.23480936, 1.17939154, 2.12397372, 3.0685559 , 4.01313807]) plt.hist(x, y, normed=True) plt.show()

R 미분과 적분

내용 expression 미분 2차 미분 mosaic를 사용한 미분 적분 미분과 적분 R에서의 미분과 적분 함수는 expression()함수에 의해 생성된 표현식을 대상으로 합니다. expression expression(문자, 또는 식) 이 표현식의 평가는 eval() 함수에 의해 실행됩니다. > ex1<-expression(1+0:9) > ex1 expression(1 + 0:9) > eval(ex1) [1] 1 2 3 4 5 6 7 8 9 10 > ex2<-expression(u, 2, u+0:9) > ex2 expression(u, 2, u + 0:9) > ex2[1] expression(u) > ex2[2] expression(2) > ex2[3] expression(u + 0:9) > u<-0.9 > eval(ex2[3]) [1] 0.9 1.9 2.9 3.9 4.9 5.9 6.9 7.9 8.9 9.9 미분 D(표현식, 미분 변수) 함수로 미분을 실행합니다. 이 함수의 표현식은 expression() 함수로 생성된 객체이며 미분 변수는 다음 식의 분모의 변수를 의미합니다. $$\frac{d}{d \text{변수}}\text{표현식}$$ 이 함수는 어떤 함수의 미분의 결과를 표현식으로 반환합니다. > D(expression(2*x^3), "x") 2 * (3 * x^2) > eq<-expression(log(x)) > eq expression(log(x)) > D(eq, "x") 1/x > eq2<-expression(a/(1+b*exp(-d*x))); eq2 expression(a/(1 + b * exp(-d * x))) > D(eq2, "x") a * (b * (exp(-d * x) * d))/(1 + b