기본 콘텐츠로 건너뛰기

[matplotlib] 등고선(Contour)

[data analysis] 라벨 인코딩( Label encoding)

라벨인코딩(Label ecoding)

자료의 라벨(label)들을 컴퓨터에 입력할 경우 컴퓨터의 경우는 라벨 자체의 값보다는 라벨 그룹내에서 각 라벨의 인덱스를 인식합니다. 이렇게 컴퓨터가 인식할 수 있도록 변환하는 과정을 인코딩(encoding), 그 반대를 디코딩(decoding)이라 합니다. 예를 들어 객체 x([-1, 4, 7])의 각 값의 인덱스 0, 1, 2가 됩니다. 그러므로 x의 인코딩 결과는 식 1과 같으며 라벨인코딩이라 합니다.

디코딩(값)인코딩(식 A3.2.3)
-10
41
72

클래스표시행렬과 같이 라벨 인코딩의 각 라벨은 데이터의 고유값들을 올림차순으로 정렬한 상태의 인덱스를 사용합니다. 이 고유값들로부터 생성되는 라벨 생성과 데이터를 그 라벨로 전환하는 과정은 LabelEncoder() 클래스를 사용하여 실행할 수 있습니다. 이 클래스의 대상은 1차원 구조의 벡터 데이터 입니다.

sklearn.preprocessing.LabelEncoder()
  • 각 변수의 인덱스를 사용하여 명목변수를 수치형으로 전환하는 클래스
  • x=sklearn.preprocessing.LabelEncoder()
    • x.fit(객체)
    • x.class : 오름차순으로 정렬한 클래스의 이름을 나타냄
    • x.transform(객체): 클래스의 인덱스를 반환, 인코딩
    • x.inverse_transform(변환된 객체): 원시데이터로 환원, 디코딩
np.random.seed(2)
x=np.random.randint(-10, 10, 10)
print(x)
[-2  5  3 -2  1  8  1 -2 -3 -8]
enc=sklpre.LabelEncoder().fit(x)
print(enc.classes_)
[-8 -3 -2  1  3  5  8]
x1=enc.transform(x)
print(x1)
[2 5 4 2 3 6 3 2 1 0]
print(enc.inverse_transform(x1))
[-2  5  3 -2  1  8  1 -2 -3 -8]

이 클래스는 데이터의 인덱스에 대응하는 것으로 문자열로 이루어진 데이터의 변환에 사용할 수 있습니다.

label = ['red','black','red','green','black','yellow','white']
enc2=preprocessing.LabelEncoder().fit(label)
print(enc2.classes_)
['black' 'green' 'red' 'white' 'yellow']
print(enc2.transform(label))
[2 0 2 1 0 4 3]
print(enc2.transform(['red','white','green']))
[2 3 1]

댓글

이 블로그의 인기 게시물

[Linear Algebra] 유사변환(Similarity transformation)

유사변환(Similarity transformation) n×n 차원의 정방 행렬 A, B 그리고 가역 행렬 P 사이에 식 1의 관계가 성립하면 행렬 A와 B는 유사행렬(similarity matrix)이 되며 행렬 A를 가역행렬 P와 B로 분해하는 것을 유사 변환(similarity transformation) 이라고 합니다. (1)A=PBP1P1AP=B 식 2는 식 1의 양변에 B의 고유값을 고려한 것입니다. (식 2)BλI=P1APλP1P=P1(APλP)=P1(AλI)P 식 2의 행렬식은 식 3과 같이 정리됩니다. det(BλI)=det(P1(APλP))=det(P1)det((AλI))det(P)=det(P1)det(P)det((AλI))=det(AλI)det(P1)det(P)=det(P1P)=det(I) 유사행렬의 특성 유사행렬인 두 정방행렬 A와 B는 'A ~ B' 와 같...

[sympy] Sympy객체의 표현을 위한 함수들

Sympy객체의 표현을 위한 함수들 General simplify(x): 식 x(sympy 객체)를 간단히 정리 합니다. import numpy as np from sympy import * x=symbols("x") a=sin(x)**2+cos(x)**2 a sin2(x)+cos2(x) simplify(a) 1 simplify(b) x3+x2x1x2+2x+1 simplify(b) x - 1 c=gamma(x)/gamma(x-2) c Γ(x)Γ(x2) simplify(c) (x2)(x1) 위의 예들 중 객체 c의 감마함수(gamma(x))는 확률분포 등 여러 부분에서 사용되는 표현식으로 다음과 같이 정의 됩니다. 감마함수는 음이 아닌 정수를 제외한 모든 수에서 정의됩니다. 식 1과 같이 자연수에서 감마함수는 factorial(!), 부동소수(양의 실수)인 경우 적분을 적용하여 계산합니다. (식 1)Γ(n)={(n1)!n:자연수0xn1exdxn:부동소수 x=symbols('x') gamma(x).subs(x,4) 6 factorial 계산은 math.factorial() 함수를 사용할 수 있습니다. import math math.factorial(3) 6 a=gamma(x).subs(x,4.5) a.evalf(3) 11.6 simpilfy() 함수의 알고리즘은 식에서 공통사항을 찾아 정리하...

sympy.solvers로 방정식해 구하기

sympy.solvers로 방정식해 구하기 대수 방정식을 해를 계산하기 위해 다음 함수를 사용합니다. sympy.solvers.solve(f, *symbols, **flags) f=0, 즉 동차방정식에 대해 지정한 변수의 해를 계산 f : 식 또는 함수 symbols: 식의 해를 계산하기 위한 변수, 변수가 하나인 경우는 생략가능(자동으로 인식) flags: 계산 또는 결과의 방식을 지정하기 위한 인수들 dict=True: {x:3, y:1}같이 사전형식, 기본값 = False set=True :{(x,3),(y,1)}같이 집합형식, 기본값 = False ratioal=True : 실수를 유리수로 반환, 기본값 = False positive=True: 해들 중에 양수만을 반환, 기본값 = False 예 x2=1의 해를 결정합니다. solve() 함수에 적용하기 위해서는 다음과 같이 식의 한쪽이 0이 되는 형태인 동차식으로 구성되어야 합니다. x21=0 import numpy as np from sympy import * x = symbols('x') solve(x**2-1, x) [-1, 1] 위 식은 계산 과정은 다음과 같습니다. x21=0(x+1)(x1)=0x=1or1x4=1의 해를 결정합니다. solve() 함수의 인수 set=True를 지정하였으므로 결과는 집합(set)형으로 반환됩니다. eq=x**4-1 solve(eq, set=True) ([x], {(-1,), (-I,), (1,), (I,)}) 위의 경우 I는 복소수입니다.즉 위 결과의 과정은 다음과 같습니다. x41=(x2+1)(x+1)(x1)=0x=±1,±1=±i,±1 실수...