기본 콘텐츠로 건너뛰기

벡터와 행렬에 관련된 그림들

gdrive, gsheet, colab 연동

gdrive, gsheet, colab 연동

colab에서 gdrive의 폴더, 파일을 사용하기 위해 드라이브를 mount 해야 합니다.

colab 앱 설치

구글 드라이브 이동 -마우스 오른쪽 클릭으로 colab연결 (최초 한번으로 동일 유형의 파일은 자동으로 연결됩니다.)

마운트

드라이브 마운트를 위한 코드 실행을 위해서는 코드 자체를 직접입력하고 실행하는 방법과 colab에서 실행하는 방법이 있습니다.

직접실행

from google.colab import drive
drive.mount('/content/gdrive')
Mounted at /content/gdrive
연결할 디렉토리로 이동
%cd /content/gdrive/MyDrive/연결할 디렉토리이름/

colab에서 실행

다음 그림과 같이 colab에서 디렉토리를 마운트 할 수 있습니다.
위 그림의 gdrive 표시가 된 부분이 마운트를 위한 것으로 클릭으로 위의 코드가 자동으로 반환되며 이후 실행은 같습니다.

연결된 디렉토리의 파일 사용

사용자 정의 디렉토리나 파일을 연결할 수 있습니다. 만약 연결된 디렉토리에 파이썬의 사용자 정의 모듈을 사용하기 위해 다음 코드를 실행합니다.
import 사용자정의모듈이름

google sheet 연결

google sheet를 사용하기위해서는 다음의 권한 인증이 필요합니다.
 from google.colab import auth
auth.authenticate_user()

import gspread
from google.auth import default
creds, _ = default()
 gc=gspread.authorize(creds)
다음은 google finance로부터의 kospi 주가 자료입니다. 다음 코드의 시트이름은 google sheet에서 주어진 이름을 사용합니다. 객체이름=gc.open('파일명').시트이름
wsh1=gc.open('stocData').sheet1
이 파일의 data를 호출하기 위해 .get_all_values()메서드를 사용합니다. 이 결과는 python의 list 형식입니다.
da0=wsh1.get_all_values()
da0[:3] 
 [['', 'Date', 'Open', 'High', 'Low', 'Close', 'Volume'],
 ['KRX:KOSPI\n',
  '2010. 10. 12',
  '1892.27',
  '1893.13',
  '1857.93',
  '1868.04',
  '314695'],
 ['open', '2010. 10. 13', '1878.58', '1881.2', '1866.41', '1876.15', '317797']]
이 형식을 pandas DataFrame 형식으로 전환하고 날짜를 인덱스로 합니다.
 da1=pd.DataFrame(da0)
da2=da1.iloc[:, 1:]
da2.index=da1.iloc[:,0]
da2.shape
(2926, 6)
da2.tail(2)
0 1 2 3 4 5 6
2022. 9. 14 2390.47 2418.42 2381.5 2411.42 461507
2022. 9. 15 2416.01 2421.63 2401.83 2401.83 424110

댓글

이 블로그의 인기 게시물

[Linear Algebra] 유사변환(Similarity transformation)

유사변환(Similarity transformation) n×n 차원의 정방 행렬 A, B 그리고 가역 행렬 P 사이에 식 1의 관계가 성립하면 행렬 A와 B는 유사행렬(similarity matrix)이 되며 행렬 A를 가역행렬 P와 B로 분해하는 것을 유사 변환(similarity transformation) 이라고 합니다. $$\tag{1} A = PBP^{-1} \Leftrightarrow P^{-1}AP = B $$ 식 2는 식 1의 양변에 B의 고유값을 고려한 것입니다. \begin{align}\tag{식 2} B - \lambda I &= P^{-1}AP – \lambda P^{-1}P\\ &= P^{-1}(AP – \lambda P)\\ &= P^{-1}(A - \lambda I)P \end{align} 식 2의 행렬식은 식 3과 같이 정리됩니다. \begin{align} &\begin{aligned}\textsf{det}(B - \lambda I ) & = \textsf{det}(P^{-1}(AP – \lambda P))\\ &= \textsf{det}(P^{-1}) \textsf{det}((A – \lambda I)) \textsf{det}(P)\\ &= \textsf{det}(P^{-1}) \textsf{det}(P) \textsf{det}((A – \lambda I))\\ &= \textsf{det}(A – \lambda I)\end{aligned}\\ &\begin{aligned}\because \; \textsf{det}(P^{-1}) \textsf{det}(P) &= \textsf{det}(P^{-1}P)\\ &= \textsf{det}(I)\end{aligned}\end{align} 유사행렬의 특성 유사행렬인 두 정방행렬 A와 B는 'A ~ B' 와 같...

[sympy] Sympy객체의 표현을 위한 함수들

Sympy객체의 표현을 위한 함수들 General simplify(x): 식 x(sympy 객체)를 간단히 정리 합니다. import numpy as np from sympy import * x=symbols("x") a=sin(x)**2+cos(x)**2 a $\sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}$ simplify(a) 1 simplify(b) $\frac{x^{3} + x^{2} - x - 1}{x^{2} + 2 x + 1}$ simplify(b) x - 1 c=gamma(x)/gamma(x-2) c $\frac{\Gamma\left(x\right)}{\Gamma\left(x - 2\right)}$ simplify(c) $\displaystyle \left(x - 2\right) \left(x - 1\right)$ 위의 예들 중 객체 c의 감마함수(gamma(x))는 확률분포 등 여러 부분에서 사용되는 표현식으로 다음과 같이 정의 됩니다. 감마함수는 음이 아닌 정수를 제외한 모든 수에서 정의됩니다. 식 1과 같이 자연수에서 감마함수는 factorial(!), 부동소수(양의 실수)인 경우 적분을 적용하여 계산합니다. $$\tag{식 1}\Gamma(n) =\begin{cases}(n-1)!& n:\text{자연수}\\\int^\infty_0x^{n-1}e^{-x}\,dx& n:\text{부동소수}\end{cases}$$ x=symbols('x') gamma(x).subs(x,4) $\displaystyle 6$ factorial 계산은 math.factorial() 함수를 사용할 수 있습니다. import math math.factorial(3) 6 a=gamma(x).subs(x,4.5) a.evalf(3) 11.6 simpilfy() 함수의 알고리즘은 식에서 공통사항을 찾아 정리하...

sympy.solvers로 방정식해 구하기

sympy.solvers로 방정식해 구하기 대수 방정식을 해를 계산하기 위해 다음 함수를 사용합니다. sympy.solvers.solve(f, *symbols, **flags) f=0, 즉 동차방정식에 대해 지정한 변수의 해를 계산 f : 식 또는 함수 symbols: 식의 해를 계산하기 위한 변수, 변수가 하나인 경우는 생략가능(자동으로 인식) flags: 계산 또는 결과의 방식을 지정하기 위한 인수들 dict=True: {x:3, y:1}같이 사전형식, 기본값 = False set=True :{(x,3),(y,1)}같이 집합형식, 기본값 = False ratioal=True : 실수를 유리수로 반환, 기본값 = False positive=True: 해들 중에 양수만을 반환, 기본값 = False 예 $x^2=1$의 해를 결정합니다. solve() 함수에 적용하기 위해서는 다음과 같이 식의 한쪽이 0이 되는 형태인 동차식으로 구성되어야 합니다. $$x^2-1=0$$ import numpy as np from sympy import * x = symbols('x') solve(x**2-1, x) [-1, 1] 위 식은 계산 과정은 다음과 같습니다. $$\begin{aligned}x^2-1=0 \rightarrow (x+1)(x-1)=0 \\ x=1 \; \text{or}\; -1\end{aligned}$$ 예 $x^4=1$의 해를 결정합니다. solve() 함수의 인수 set=True를 지정하였으므로 결과는 집합(set)형으로 반환됩니다. eq=x**4-1 solve(eq, set=True) ([x], {(-1,), (-I,), (1,), (I,)}) 위의 경우 I는 복소수입니다.즉 위 결과의 과정은 다음과 같습니다. $$x^4-1=(x^2+1)(x+1)(x-1)=0 \rightarrow x=\pm \sqrt{-1}, \; \pm 1=\pm i,\; \pm1$$ 실수...