8.4.2 Lasso 모델
Ridge 모델은 L2 norm(계수의 제곱합)의 패널티 항에 음이 아닌 실수의 소멸계수를 가지므로 회귀계수가 0에 도달할 수 없으므로 변수의 수를 감소시킬 수 없습니다. 대신에 Lasso 모델은 식 1과 같이 패널티항으로 L1 Norm을 사용하여 일부 회귀계수를 0로 만들 수 있습니다. 그러므로 모델의 복잡성을 약화시킴으로서 다중공선성 문제를 개선시킬 수 있습니다.
\begin{align}\tag{식 1} \text{MSE}& = (y − Xβ)^T(y − Xβ) + α\Vert{β}\Vert\\ & X,\, y:\,\text{설명, 반응변수}\\ &\alpha,\;β: \text{소멸계수, 회귀계수} \end{align}
식 1에서 패널티항이 1차이므로 β = 0인 경우는 미분할 수 없습니다. 이 경우 미분 가능하지 않은 볼록함수에 적용할 수 있는 subdifferential(하방미분)을 적용하여 식 2와 같이 미분을 계산합니다.
$$\tag{식 2}\frac{\partial \Vert{\beta}\Vert}{\partial \beta}=\begin{cases}1& \beta \gt 0\\ [-1,\,1]& \beta =0\\ -1 & \beta \lt 0 \end{cases}$$
식 2를 적용하여 MSE의 최소점을 찾기 위한 미분결과는 식 3과 같습니다.
$$\tag{식 3}\frac{\partial \text{MSE}}{\partial \beta}=\begin{cases}-2X^Ty+2X^TX\beta+\alpha=0& \beta \gt 0\\ -2X^Ty+2X^TX\beta+\alpha[-1,\,1]=0& \beta =0\\ -2X^Ty+2X^TX\beta-\alpha=0 & \beta \lt 0 \end{cases}$$
식 3을 정리하면 Lasso 모델의 회귀계수(β)는 식 4와 같이 계산됩니다.
$$\tag{식 4}\beta=\begin{cases}\beta_\text{ols}-\frac{1}{2}(X^TX)\alpha& \beta \gt 0\\ \beta_\text{ols}-\frac{1}{2}(X^TX)\alpha[-1,\,1]& \beta =0\\\beta_\text{ols}+\frac{1}{2}(X^TX)\alpha& \beta \lt 0 \end{cases}$$
OLS 회귀계수를 기준으로 α의 조건에 따라 계수를 0으로 만들수 있습니다. 결과적으로 변수를 제거하여 모델의 복잡도는 감소시킬 수 있습니다.
sklearn.linear_model.Lasso() 클래스를 사용하여 모델을 구축할 수 있습니다. 임의의 가상데이터를 사용하여 α에 따른 설명변수의 변화는 다음과 같습니다.
import numpy as np import pandas as pd from sklearn.linear_model import Lasso, LassoCV from sklearn.datasets import make_regression import yfinance as yf import matplotlib.pyplot as plt
X,y=make_regression(noise=0.5, random_state=7) alphas=np.linspace(0.001, 50, 100) coefs=[] for a in alphas: m=Lasso(alpha=a).fit(X,y) cf=m.coef_ coefs.append(cf)
plt.figure(figsize=(5, 3)) plt.plot(alphas, coefs) plt.xlabel("alpha") plt.ylabel("coeficients") plt.title("Trend of coefficient by alpha") plt.show()
그림 1에서 나타낸 것과 같이 α가 증가할수록 각 변수에 대응하는 회귀계수의 값은 감소하며 그 결과로 수 역시 감소합니다. ridge 모델과 같이 lasso 모델 역시 α의 선정이 중요하며 sklean.linear_models.LassoCV() 클래스를 적용할 수 있습니다.
예 1)
코스피지수(kos), 코스탁지수(kq), kodex 레버리지(kl), kodex 인버스(ki), 그리고 원달러환율(WonDol)의 일일 시가, 고가, 저가, 종가(o,h,p,c)들을 설명변수로 사용하여 삼성전자(sam)의 일일 종가를 추정하는 Lasso 회귀모델을 생성합니다.
st=pd.Timestamp(2023,1, 10) et=pd.Timestamp(2024, 5, 31) code=["^KS11", "^KQ11", "122630.KS", "114800.KS","KRW=X","005930.KS"] nme=["kos","kq","kl", "ki", "WonDol","sam" ] da=pd.DataFrame() for i, j in zip(nme,code): d=yf.download(j,st, et)[["Open","High","Low","Close"]] d.columns=[i+"_"+k for k in ["o","h","l","c"]] da=pd.concat([da, d], axis=1) da=da.ffill() da.columns
Index(['kos_o', 'kos_h', 'kos_l', 'kos_c', 'kq_o', 'kq_h', 'kq_l', 'kq_c', 'kl_o', 'kl_h', 'kl_l', 'kl_c', 'ki_o', 'ki_h', 'ki_l', 'ki_c', 'WonDol_o', 'WonDol_h', 'WonDol_l', 'WonDol_c', 'sam_o', 'sam_h', 'sam_l', 'sam_c'], dtype='object')
설명변수(ind)와 반응변수(de)로 분리하고 설명변수를 표준화합니다. 모델 생성을 위한 훈련(train)세트와 검증(test)세트로 구분합니다.
ind=da.values[:-1,:-1] de=da.values[1:,-1].reshape(-1,1) final=da.values[-1, :-1].reshape(1,-1) indScaler=StandardScaler().fit(ind) indNor=indScaler.transform(ind) finalNor=indScaler.transform(final) Xtr, Xte, ytr, yte=train_test_split(indNor, de, test_size=0.3, random_state=3) print(finalNor.round(2))
[[ 1.13 1.03 0.97 0.85 -0.19 -0.21 -0.15 -0.26 1.26 1.15 1.14 1.05 -1.32 -1.23 -1.24 -1.15 1.63 1.78 1.75 1.63 0.75 0.72 0.65]]
LassoCV()
클래스를 적용하여 적정한 α를 발견합니다.
ytr1=np.ravel(ytr) yte1=np.ravel(yte) las=LassoCV(cv=5, random_state=3).fit(Xtr, ytr1) a_find=las.alpha_; a_find.round(4)
5.4274
위 모델에서 사용된 변수는 다음과 같습니다. 즉, 총 23개의 설명변수 중 9개만이 사용되었습니다.
coefIdx=np.where(las.coef_ !=0)[0] usingFeature=da.columns[coefIdx];usingFeature
Index(['kos_h', 'kq_o', 'WonDol_o', 'WonDol_h', 'WonDol_l', 'WonDol_c', 'sam_o', 'sam_h', 'sam_l'], dtype='object')
len(usingFeature)
9
pre=las.predict(finalNor) print(pre)
[73963.82167589]
위의 α의 범위 alphas에서의 각 모델의 MSE의 변화를 살펴봅니다.
alphas=np.linspace(0.01, 10, 100) rmse_tr=[] rmse_te=[] for a in alphas: m=Lasso(alpha=a).fit(Xtr, ytr1) pre_tr=m.predict(Xtr) rmse_tr1=mean_squared_error(ytr1, pre_tr, squared=False) rmse_tr.append(rmse_tr1) pre_te=m.predict(Xte) rmse_te1=mean_squared_error(yte1, pre_te, squared=False) rmse_te.append(rmse_te1)
plt.figure(figsize=(5,3)) plt.plot(alphas, rmse_tr, color="blue", label="train set") plt.plot(alphas, rmse_te, color="red", label="test set") plt.axvline(a_find, linestyle="dotted", color="green", label=f"alpha={round(a_find, 3)}") plt.xlabel("alpha") plt.ylabel("RMSE") plt.legend(loc="best") plt.grid() plt.show()
그림 2에 의하면 α의 증가에 의해 훈련데이터의 MSE는 감소하지만 검정데이터에서 계속 증가를 보이지만 두 그룹의 차이가 감소합니다. 이러한 경향에서 LassoCV()에 의한 모델은 두 그룹의 MSE의 변화와 그 차이를 고려한 것입니다.
댓글
댓글 쓰기