기본 콘텐츠로 건너뛰기

벡터와 행렬에 관련된 그림들

Estimation

Contents

  1. Point estimation
  2. Interval estimation
  3. Confidence Interval

Estimation

Estimation is divided into point estimation, which estimates a specific value of a parameter, and interval estimation, which estimates a certain interval in which the parameter is included.

Point estimation

A statistic used to estimate the parameters of a population from a sample is called an estimator, and an estimate that meets some assumptions and has no bias is used as an unbiased estimator. For example, to estimate the population mean, the sample mean is used as an unbiased estimate.

The sample mean of n samples X1, X2, …, Xn is calculated as in Equation 1 and is an estimator of the population mean.

$$\begin{align}\tag{1} \hat{\mu}&=\bar{X}\\ &=\frac{1}{n}(\bar{X_1}+\bar{X_2}+\cdots+\bar{X_n})\\ &=\frac{1}{n}\sum^n_{i=1}\bar{X_i } \end{align}$$

Also, in general, the population variance σ2 is an unknown value, so it is calculated as in Equation 2 using the standard deviation s of the sampling distribution as an estimator.

$$\begin{align} \tag{2}\hat{\sigma}&=s\\ &=\sqrt{\frac{1}{n-1}\sum^n_{i=1}(\bar{X_i}-\bar{X})}\\ n :&\text{sample size} \end{align}$$

Interval estimation

Parameters estimated by the statistic of a sample have uncertainty because they vary depending on the sample being sampled from the population. Therefore, rather than representing a parameter with a single value, such as a point estimate, it would be more reasonable to represent an interval that includes the parameter at a level that is probabilistically reliable. These intervals are called confidence intervals.

Confidence Interval

The sample mean ($\bar{x}$) can be a good estimator for the population mean ($\mu$), but uncertainty about perfect agreement exists. Therefore, based on the estimator, it is possible to indicate by setting the interval where the population mean is most likely to exist. For example, assuming a normal distribution, you can specify an interval in which the estimate can exist in either or both directions around the mean with the highest probability. Such an interval is called confidence interval.

If the sample mean is within the confidence interval for estimating the population mean, then the basis for using the sample mean as the population mean is prepared. However, if it is located outside that interval, it may be difficult to use it as a population mean. That is, the assumption of the distribution and the establishment of a confidence interval are used as criteria for accepting or rejecting the estimator.

As shown in Figure 1, the 95% probability interval in the standard normal distribution exists in the interval (μ-1.96σ, μ+1.96 σ). By applying this interval, standardized values as in Equation 3 can be returned to their original values by Equation 4.

$$\begin{equation} \tag{4} Z=\frac{X-\mu_x}{\sigma_x} \end{equation}$$
import numpy as np
import pandas as pd 
import matplotlib.pyplot as plt
from scipy import stats
plt.figure(figsize=(6,3))
x=np.linspace(-3, 3.01, 1000)
y=[stats.norm.pdf(i) for i in x]
plt.plot(x, y, label='N(0, 1)')
plt.axhline(0, color="black")
plt.axvline(0, linestyle="--", color="black", label="Mean", alpha=0.3)
plt.axvline(-1.96, linestyle="--", color="green", label="Lower")
plt.axvline(1.96, linestyle="--", color="red", label="Upper")
plt.fill_between(x, 0, y, where=(x <=-1.96) | (x>=1.95), facecolor="skyblue", alpha=0.5)
plt.text(0, -0.09,"x", size="13", weight="bold")
plt.ylabel("pdf", size="13", weight="bold")
plt.legend(loc="best")
plt.xticks([])
plt.text(-0, -0.05, 0, size="13", weight="bold")
plt.text(-2.4, -0.05, -1.96, size="13", weight="bold")
plt.text(1.6, -0.05, 1.96, size="13", weight="bold")
plt.text(-2.6, 0.02, r"$\mathbf{\frac{\alpha}{2}}$", size="14", weight="bold")
plt.text(-0.3, 0.1, r"1-$\mathbf{\alpha}$(0.9)", size="14", weight="bold")
plt.text(2.0, 0.02, r"$\mathbf{\frac{\alpha}{2}}$", size="14", weight="bold")
plt.show()
Figure 1. Confidence and rejection intervals in the standard normal distribution(α=0.05).
$$\begin{align}\tag{4} &P(-1.96 \le Z \le 1.96)=0.95\\ &\rightarrow P\left(-1.96 \le \frac{\overline{y}-\mu}{\frac{\sigma}{\sqrt{n}}} \le 1.96 \right)=0.95\\ &\rightarrow P\left(\overline{y}-1.96\frac{\sigma}{\sqrt{n}} \le Z \le \overline{y}+1.96\frac{\sigma}{\sqrt{n}}\right)=0.95 \end{align}$$

In the result of Equation 4, based on the average $\mu$, the value on the left is lower bound, and the value on the right is upper bound. The bounds of this confidence interval can be calculated using Equation 5.

$$\begin{align}\tag{5} &\text{CI}_\mu=\overline{y} \pm z_\frac{\alpha}{2}\frac{\alpha}{\sqrt{n}}\\ &n: \text{ssample size}\\ &z_\frac{\alpha}{2}:\text{Standard score corresponding to} \,P=100(1-\alpha)\% \end{align}$$

For example, in Figure 1, the standard normal distribution, the tail of the curve is the region corresponding to the significance level. Conversely, the part excluding the significance level from the overall probability, that is, 1-α, is called confidence level or confidence coefficient.

For a significance level of 0.05, the left and right edges of the curve are 0.025 and 1-0.025. The value corresponding to this point is the standard score and is expressed as zα/2. This value can be checked using the scipy.stats.norm.ppf(q, loc=0, scale=1) method. This method returns a value corresponding to probability q (0.025 or 0.975). This result is equal to the lower or upper bound returned by the interval(1-α, loc=0, scale=1) method. (The method interval() assumes a two-sided test.(see Hypothesis Test)

round(stats.norm.ppf(0.975), 4), round(stats.norm.ppf(0.025),4)
(1.96, -1.96)
np.around(stats.norm.interval(0.95), 4)
array([-1.96,  1.96])

댓글

이 블로그의 인기 게시물

[Linear Algebra] 유사변환(Similarity transformation)

유사변환(Similarity transformation) n×n 차원의 정방 행렬 A, B 그리고 가역 행렬 P 사이에 식 1의 관계가 성립하면 행렬 A와 B는 유사행렬(similarity matrix)이 되며 행렬 A를 가역행렬 P와 B로 분해하는 것을 유사 변환(similarity transformation) 이라고 합니다. $$\tag{1} A = PBP^{-1} \Leftrightarrow P^{-1}AP = B $$ 식 2는 식 1의 양변에 B의 고유값을 고려한 것입니다. \begin{align}\tag{식 2} B - \lambda I &= P^{-1}AP – \lambda P^{-1}P\\ &= P^{-1}(AP – \lambda P)\\ &= P^{-1}(A - \lambda I)P \end{align} 식 2의 행렬식은 식 3과 같이 정리됩니다. \begin{align} &\begin{aligned}\textsf{det}(B - \lambda I ) & = \textsf{det}(P^{-1}(AP – \lambda P))\\ &= \textsf{det}(P^{-1}) \textsf{det}((A – \lambda I)) \textsf{det}(P)\\ &= \textsf{det}(P^{-1}) \textsf{det}(P) \textsf{det}((A – \lambda I))\\ &= \textsf{det}(A – \lambda I)\end{aligned}\\ &\begin{aligned}\because \; \textsf{det}(P^{-1}) \textsf{det}(P) &= \textsf{det}(P^{-1}P)\\ &= \textsf{det}(I)\end{aligned}\end{align} 유사행렬의 특성 유사행렬인 두 정방행렬 A와 B는 'A ~ B' 와 같...

[sympy] Sympy객체의 표현을 위한 함수들

Sympy객체의 표현을 위한 함수들 General simplify(x): 식 x(sympy 객체)를 간단히 정리 합니다. import numpy as np from sympy import * x=symbols("x") a=sin(x)**2+cos(x)**2 a $\sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}$ simplify(a) 1 simplify(b) $\frac{x^{3} + x^{2} - x - 1}{x^{2} + 2 x + 1}$ simplify(b) x - 1 c=gamma(x)/gamma(x-2) c $\frac{\Gamma\left(x\right)}{\Gamma\left(x - 2\right)}$ simplify(c) $\displaystyle \left(x - 2\right) \left(x - 1\right)$ 위의 예들 중 객체 c의 감마함수(gamma(x))는 확률분포 등 여러 부분에서 사용되는 표현식으로 다음과 같이 정의 됩니다. 감마함수는 음이 아닌 정수를 제외한 모든 수에서 정의됩니다. 식 1과 같이 자연수에서 감마함수는 factorial(!), 부동소수(양의 실수)인 경우 적분을 적용하여 계산합니다. $$\tag{식 1}\Gamma(n) =\begin{cases}(n-1)!& n:\text{자연수}\\\int^\infty_0x^{n-1}e^{-x}\,dx& n:\text{부동소수}\end{cases}$$ x=symbols('x') gamma(x).subs(x,4) $\displaystyle 6$ factorial 계산은 math.factorial() 함수를 사용할 수 있습니다. import math math.factorial(3) 6 a=gamma(x).subs(x,4.5) a.evalf(3) 11.6 simpilfy() 함수의 알고리즘은 식에서 공통사항을 찾아 정리하...

sympy.solvers로 방정식해 구하기

sympy.solvers로 방정식해 구하기 대수 방정식을 해를 계산하기 위해 다음 함수를 사용합니다. sympy.solvers.solve(f, *symbols, **flags) f=0, 즉 동차방정식에 대해 지정한 변수의 해를 계산 f : 식 또는 함수 symbols: 식의 해를 계산하기 위한 변수, 변수가 하나인 경우는 생략가능(자동으로 인식) flags: 계산 또는 결과의 방식을 지정하기 위한 인수들 dict=True: {x:3, y:1}같이 사전형식, 기본값 = False set=True :{(x,3),(y,1)}같이 집합형식, 기본값 = False ratioal=True : 실수를 유리수로 반환, 기본값 = False positive=True: 해들 중에 양수만을 반환, 기본값 = False 예 $x^2=1$의 해를 결정합니다. solve() 함수에 적용하기 위해서는 다음과 같이 식의 한쪽이 0이 되는 형태인 동차식으로 구성되어야 합니다. $$x^2-1=0$$ import numpy as np from sympy import * x = symbols('x') solve(x**2-1, x) [-1, 1] 위 식은 계산 과정은 다음과 같습니다. $$\begin{aligned}x^2-1=0 \rightarrow (x+1)(x-1)=0 \\ x=1 \; \text{or}\; -1\end{aligned}$$ 예 $x^4=1$의 해를 결정합니다. solve() 함수의 인수 set=True를 지정하였으므로 결과는 집합(set)형으로 반환됩니다. eq=x**4-1 solve(eq, set=True) ([x], {(-1,), (-I,), (1,), (I,)}) 위의 경우 I는 복소수입니다.즉 위 결과의 과정은 다음과 같습니다. $$x^4-1=(x^2+1)(x+1)(x-1)=0 \rightarrow x=\pm \sqrt{-1}, \; \pm 1=\pm i,\; \pm1$$ 실수...