기본 콘텐츠로 건너뛰기

[ML] 결정트리(Decision Tree) 모델

Estimation

Contents

  1. Point estimation
  2. Interval estimation
  3. Confidence Interval

Estimation

Estimation is divided into point estimation, which estimates a specific value of a parameter, and interval estimation, which estimates a certain interval in which the parameter is included.

Point estimation

A statistic used to estimate the parameters of a population from a sample is called an estimator, and an estimate that meets some assumptions and has no bias is used as an unbiased estimator. For example, to estimate the population mean, the sample mean is used as an unbiased estimate.

The sample mean of n samples X1, X2, …, Xn is calculated as in Equation 1 and is an estimator of the population mean.

$$\begin{align}\tag{1} \hat{\mu}&=\bar{X}\\ &=\frac{1}{n}(\bar{X_1}+\bar{X_2}+\cdots+\bar{X_n})\\ &=\frac{1}{n}\sum^n_{i=1}\bar{X_i } \end{align}$$

Also, in general, the population variance σ2 is an unknown value, so it is calculated as in Equation 2 using the standard deviation s of the sampling distribution as an estimator.

$$\begin{align} \tag{2}\hat{\sigma}&=s\\ &=\sqrt{\frac{1}{n-1}\sum^n_{i=1}(\bar{X_i}-\bar{X})}\\ n :&\text{sample size} \end{align}$$

Interval estimation

Parameters estimated by the statistic of a sample have uncertainty because they vary depending on the sample being sampled from the population. Therefore, rather than representing a parameter with a single value, such as a point estimate, it would be more reasonable to represent an interval that includes the parameter at a level that is probabilistically reliable. These intervals are called confidence intervals.

Confidence Interval

The sample mean ($\bar{x}$) can be a good estimator for the population mean ($\mu$), but uncertainty about perfect agreement exists. Therefore, based on the estimator, it is possible to indicate by setting the interval where the population mean is most likely to exist. For example, assuming a normal distribution, you can specify an interval in which the estimate can exist in either or both directions around the mean with the highest probability. Such an interval is called confidence interval.

If the sample mean is within the confidence interval for estimating the population mean, then the basis for using the sample mean as the population mean is prepared. However, if it is located outside that interval, it may be difficult to use it as a population mean. That is, the assumption of the distribution and the establishment of a confidence interval are used as criteria for accepting or rejecting the estimator.

As shown in Figure 1, the 95% probability interval in the standard normal distribution exists in the interval (μ-1.96σ, μ+1.96 σ). By applying this interval, standardized values as in Equation 3 can be returned to their original values by Equation 4.

$$\begin{equation} \tag{4} Z=\frac{X-\mu_x}{\sigma_x} \end{equation}$$
import numpy as np
import pandas as pd 
import matplotlib.pyplot as plt
from scipy import stats
plt.figure(figsize=(6,3))
x=np.linspace(-3, 3.01, 1000)
y=[stats.norm.pdf(i) for i in x]
plt.plot(x, y, label='N(0, 1)')
plt.axhline(0, color="black")
plt.axvline(0, linestyle="--", color="black", label="Mean", alpha=0.3)
plt.axvline(-1.96, linestyle="--", color="green", label="Lower")
plt.axvline(1.96, linestyle="--", color="red", label="Upper")
plt.fill_between(x, 0, y, where=(x <=-1.96) | (x>=1.95), facecolor="skyblue", alpha=0.5)
plt.text(0, -0.09,"x", size="13", weight="bold")
plt.ylabel("pdf", size="13", weight="bold")
plt.legend(loc="best")
plt.xticks([])
plt.text(-0, -0.05, 0, size="13", weight="bold")
plt.text(-2.4, -0.05, -1.96, size="13", weight="bold")
plt.text(1.6, -0.05, 1.96, size="13", weight="bold")
plt.text(-2.6, 0.02, r"$\mathbf{\frac{\alpha}{2}}$", size="14", weight="bold")
plt.text(-0.3, 0.1, r"1-$\mathbf{\alpha}$(0.9)", size="14", weight="bold")
plt.text(2.0, 0.02, r"$\mathbf{\frac{\alpha}{2}}$", size="14", weight="bold")
plt.show()
Figure 1. Confidence and rejection intervals in the standard normal distribution(α=0.05).
$$\begin{align}\tag{4} &P(-1.96 \le Z \le 1.96)=0.95\\ &\rightarrow P\left(-1.96 \le \frac{\overline{y}-\mu}{\frac{\sigma}{\sqrt{n}}} \le 1.96 \right)=0.95\\ &\rightarrow P\left(\overline{y}-1.96\frac{\sigma}{\sqrt{n}} \le Z \le \overline{y}+1.96\frac{\sigma}{\sqrt{n}}\right)=0.95 \end{align}$$

In the result of Equation 4, based on the average $\mu$, the value on the left is lower bound, and the value on the right is upper bound. The bounds of this confidence interval can be calculated using Equation 5.

$$\begin{align}\tag{5} &\text{CI}_\mu=\overline{y} \pm z_\frac{\alpha}{2}\frac{\alpha}{\sqrt{n}}\\ &n: \text{ssample size}\\ &z_\frac{\alpha}{2}:\text{Standard score corresponding to} \,P=100(1-\alpha)\% \end{align}$$

For example, in Figure 1, the standard normal distribution, the tail of the curve is the region corresponding to the significance level. Conversely, the part excluding the significance level from the overall probability, that is, 1-α, is called confidence level or confidence coefficient.

For a significance level of 0.05, the left and right edges of the curve are 0.025 and 1-0.025. The value corresponding to this point is the standard score and is expressed as zα/2. This value can be checked using the scipy.stats.norm.ppf(q, loc=0, scale=1) method. This method returns a value corresponding to probability q (0.025 or 0.975). This result is equal to the lower or upper bound returned by the interval(1-α, loc=0, scale=1) method. (The method interval() assumes a two-sided test.(see Hypothesis Test)

round(stats.norm.ppf(0.975), 4), round(stats.norm.ppf(0.025),4)
(1.96, -1.96)
np.around(stats.norm.interval(0.95), 4)
array([-1.96,  1.96])

댓글

이 블로그의 인기 게시물

[Linear Algebra] 유사변환(Similarity transformation)

유사변환(Similarity transformation) n×n 차원의 정방 행렬 A, B 그리고 가역 행렬 P 사이에 식 1의 관계가 성립하면 행렬 A와 B는 유사행렬(similarity matrix)이 되며 행렬 A를 가역행렬 P와 B로 분해하는 것을 유사 변환(similarity transformation) 이라고 합니다. $$\tag{1} A = PBP^{-1} \Leftrightarrow P^{-1}AP = B $$ 식 2는 식 1의 양변에 B의 고유값을 고려한 것입니다. \begin{align}\tag{식 2} B - \lambda I &= P^{-1}AP – \lambda P^{-1}P\\ &= P^{-1}(AP – \lambda P)\\ &= P^{-1}(A - \lambda I)P \end{align} 식 2의 행렬식은 식 3과 같이 정리됩니다. \begin{align} &\begin{aligned}\textsf{det}(B - \lambda I ) & = \textsf{det}(P^{-1}(AP – \lambda P))\\ &= \textsf{det}(P^{-1}) \textsf{det}((A – \lambda I)) \textsf{det}(P)\\ &= \textsf{det}(P^{-1}) \textsf{det}(P) \textsf{det}((A – \lambda I))\\ &= \textsf{det}(A – \lambda I)\end{aligned}\\ &\begin{aligned}\because \; \textsf{det}(P^{-1}) \textsf{det}(P) &= \textsf{det}(P^{-1}P)\\ &= \textsf{det}(I)\end{aligned}\end{align} 유사행렬의 특성 유사행렬인 두 정방행렬 A와 B는 'A ~ B' 와 같

[matplotlib] 히스토그램(Histogram)

히스토그램(Histogram) 히스토그램은 확률분포의 그래픽적인 표현이며 막대그래프의 종류입니다. 이 그래프가 확률분포와 관계가 있으므로 통계적 요소를 나타내기 위해 많이 사용됩니다. plt.hist(X, bins=10)함수를 사용합니다. x=np.random.randn(1000) plt.hist(x, 10) plt.show() 위 그래프의 y축은 각 구간에 해당하는 갯수이다. 빈도수 대신 확률밀도를 나타내기 위해서는 위 함수의 매개변수 normed=True로 조정하여 나타낼 수 있다. 또한 매개변수 bins의 인수를 숫자로 전달할 수 있지만 리스트 객체로 지정할 수 있다. 막대그래프의 경우와 마찬가지로 각 막대의 폭은 매개변수 width에 의해 조정된다. y=np.linspace(min(x)-1, max(x)+1, 10) y array([-4.48810153, -3.54351935, -2.59893717, -1.65435499, -0.70977282, 0.23480936, 1.17939154, 2.12397372, 3.0685559 , 4.01313807]) plt.hist(x, y, normed=True) plt.show()

R 미분과 적분

내용 expression 미분 2차 미분 mosaic를 사용한 미분 적분 미분과 적분 R에서의 미분과 적분 함수는 expression()함수에 의해 생성된 표현식을 대상으로 합니다. expression expression(문자, 또는 식) 이 표현식의 평가는 eval() 함수에 의해 실행됩니다. > ex1<-expression(1+0:9) > ex1 expression(1 + 0:9) > eval(ex1) [1] 1 2 3 4 5 6 7 8 9 10 > ex2<-expression(u, 2, u+0:9) > ex2 expression(u, 2, u + 0:9) > ex2[1] expression(u) > ex2[2] expression(2) > ex2[3] expression(u + 0:9) > u<-0.9 > eval(ex2[3]) [1] 0.9 1.9 2.9 3.9 4.9 5.9 6.9 7.9 8.9 9.9 미분 D(표현식, 미분 변수) 함수로 미분을 실행합니다. 이 함수의 표현식은 expression() 함수로 생성된 객체이며 미분 변수는 다음 식의 분모의 변수를 의미합니다. $$\frac{d}{d \text{변수}}\text{표현식}$$ 이 함수는 어떤 함수의 미분의 결과를 표현식으로 반환합니다. > D(expression(2*x^3), "x") 2 * (3 * x^2) > eq<-expression(log(x)) > eq expression(log(x)) > D(eq, "x") 1/x > eq2<-expression(a/(1+b*exp(-d*x))); eq2 expression(a/(1 + b * exp(-d * x))) > D(eq2, "x") a * (b * (exp(-d * x) * d))/(1 + b