기본 콘텐츠로 건너뛰기

[ML] 결정트리(Decision Tree) 모델

Discrete probability distribution I : Bernoulli and Binomial

Contents

  1. probability mass function
  2. Cumulative Distribution Function(CDF)
  3. Bernoulli and the binomial probability distribution

Discrete probability distribution

The probability distribution is created based on the probability of each point or each interval in the sample space. Such a probability can be written as a function, and if the event (random variable) that is the object of the probability is a discrete variable, it is called probability mass function(PMF). Also, if it is a continuous variable, it is called probability density function(PDF). In both cases, the sum of each probability in a constant variable interval is called Cumulative Probability Distribution Function(CDF). The probability distribution can be expressed visually as a correspondence between the values ​​of each random variable and a function. The shape of these distributions tends to follow the distributions implemented by a particular function. Therefore, various statistical methods can be applied by assuming an appropriate probability distribution in the analysis of data. For this reason, it can be said that understanding the characteristics of the distribution provides the basis for statistical analysis of data. This post introduces the discrete probability distribution.

It is very helpful to understand the distribution by organizing the probability mass function (PMF) and the cumulative distribution function (CDF). The probability density function (PDF) is rearranged when introducing continuous variables.

Probability Mass Function(PMF)

If the range Rx of the random variable X is a countable set, the sample space (S) can be expressed as follows. $$R_x={x_1,\; x_2, \;x_3, \;\cdots} $$

A random variable is also a function that maps values to variables. That is, x1, x2, x3 etc. of S are values corresponding to each random variable. The function that can calculate the probability of each corresponding event becomes the probability mass function. If the event of interest is A, it is expressed as follows.

$$\text{A}=\{\text{s } \in \text{S} | \text{X(s)}=\text{x}_i\} $$

The probability of event A is formulated by the probability mass function as

$$ f(x_i)=P(X=x_i) , \quad i = 1,\, 2,\, \cdots$$

Example 1)
  If a coin is tossed twice, determine S and the probability mass function (PMF) in a trial using the number of heads as a random variable.

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sympy import *
X=['H','T']
S=np.array([])
for i in X:
    for j in X:
        S=np.append(S,(i, j).count("H"))
S
array([2., 1., 1., 0.])
uni, fre=np.unique(S, return_counts=True)
uni, fre
(array([0., 1., 2.]), array([1, 2, 1]))
p=fre/np.sum(fre)
p
array([0.25, 0.5 , 0.25])
re=pd.DataFrame([uni, fre, p], index=["# of H", "Frequency", "Probabiltiy(p)"]).T
re
# of H Frequency Probabiltiy(p)
0 0.0 1.0 0.25
1 1.0 2.0 0.50
2 2.0 1.0 0.25
plt.figure(figsize=(6, 4))
plt.hist(S, bins=3, rwidth=0.8)
plt.xlabel("# of H", size="13", weight="bold")
plt.ylabel("PMF", size="13", weight="bold")
plt.show()
Figure 1. PMF for the number of heads in two coin trials.

Example 2)
 If two dice are rolled and the sum of each value is a random variable, the range of the random variable ?

x=[1,2,3,4,5,6]
s=np.array([])
for i in x:
    for j in x:
        s=np.append(s, i+j)
s
array([ 2.,  3.,  4.,  5.,  6.,  7.,  3.,  4.,  5.,  6.,  7.,  8.,  4.,
        5.,  6.,  7.,  8.,  9.,  5.,  6.,  7.,  8.,  9., 10.,  6.,  7.,
        8.,  9., 10., 11.,  7.,  8.,  9., 10., 11., 12.])
uni, fre=np.unique(s, return_counts=True)
P=fre*Rational(1, 36)
re=pd.DataFrame([uni, fre, P], index=["# of H", "Frequent", "Probability(p)"]).T
re
# of H Frequent Probability(p)
0 2.0 1 1/36
1 3.0 2 1/18
2 4.0 3 1/12
3 5.0 4 1/9
4 6.0 5 5/36
5 7.0 6 1/6
6 8.0 5 5/36
7 9.0 4 1/9
8 10.0 3 1/12
9 11.0 2 1/18
10 12.0 1 1/36
plt.figure(figsize=(6, 4))
plt.hist(s, bins=10, rwidth=0.8)
plt.xlabel("# of H", size="13", weight="bold")
plt.ylabel("PMF", size="13", weight="bold")
plt.show()
Figure 2. PMF for the sum of points when two dice are executed in Example 2.

Example 3)
  The conditions for a normal coin toss test are as follows:

  • The probability of getting heads is p
  • Random variable Y: the number of times the coin is tossed when it comes up for the first time
    • Determine the probability distribution of Y and compute $P(2 \le x \le 5)$ if $p=\frac{1}{2}$.

      $$\begin{align}&f(1)=P(Y=1)=P(H)=p\\&f(2) = P(Y=2)=P(TH)=(1-p)p\\ &f(3) = P(Y=3)=p(TTH)=(1-p)^2p\\ & \qquad \cdots\\ &f(y) = P(Y=y)=P(TT \cdots H)=(1-p)^{y-1}p\\ &P(2 \le x \le 5)=\sum^5_{x=2} p(1-p)^{x-1} \end{align}$$
      p=Rational(1/2)
      Px=np.array([(1-p)**(i-1)*p for i in range(2, 6)])
      Px
      array([1/4, 1/8, 1/16, 1/32], dtype=object)
      P=np.sum(Px)
      P
      $\displaystyle \color{blue}{\frac{15}{32}}$

      Cumulative Distribution Function(CDF)

      A probability mass function represents a probability value for a point. In the case of a discrete variable, such a measurement is possible because the variable is a countable quantity, but in the case of a continuous variable, which will be introduced in the next chapter, it is difficult to specify a point, so a probability mass function cannot be defined. Instead, the probability density function is used. However, probabilities over a range can be calculated for both discrete and continuous variables. That is, it can be expressed as the sum of all probabilities at several points or in a specific range. This is called cumulative distribution function(CDF).

      The cumulative distribution function (CDF) of the random variable X is defined as follows.

      $$F(x)=P(X \le x), \quad \forall x \in R_X $$

      Example 4)
        If the random variable X is the number of heads in the trial of tossing two coins, then $R_X=\{0, 1, 2\}$. Determine the cumulative distribution function in this case.

      To represent all events in this trial, the itertools module function product() can be substituted for loops such as for statements.

      import itertools as itt
      case=list(itt.product(range(2), repeat=2))
      case
      [(0, 0), (0, 1), (1, 0), (1, 1)]
      Rx=np.array([i[0]+i[1] for i in case])
      Rx
      array([0, 1, 1, 2])
      uni, fre=np.unique(Rx, return_counts=True)
      uni
      array([0, 1, 2])
      pmf=fre*Rational(1, 4)
      pmf
      array([1/4, 1/2, 1/4], dtype=object)

      The above results are summarized as follows.

      $$f(x)=\begin{cases}P(X=0)&=\frac{1}{4}\\P(X=1)&=\frac{1}{2}\\P(X=2)&=\frac{1}{4}\end{cases}$$

      The probability mass function can be rearranged by dividing the range as follows. As a result, it represents a cumulative distribution function over a certain range.

      $$F(x)=\begin{cases}P(X \le 0)&=\frac{1}{4}\\P(X \le 1)&=\frac{1}{4}+\frac{1}{2}=\frac{3}{4}\\P(X \le 2)&=\frac{1}{4}+\frac{1}{2}+\frac{1}{4}=1\end{cases}$$

      In the following code, the cumsum() function of the numpy module is used to calculate the cumulative sum of objects.

      cdf=np.cumsum(pmf)
      cdf
      array([1/4, 3/4, 1], dtype=object)
      plt.step(uni, cdf, label="CDF")
      plt.scatter(uni, pmf, label="PMF", color="red")
      plt.xlabel("Rx", size='13', weight="bold")
      plt.ylabel("Probability", size='13', weight="bold")
      plt.legend(loc="best")
      plt.show()
      Figure 3. PMF and CDF for two coins in example 4.

      Bernoulli and the binomial probability distribution

      A probability distribution showing only success or failure (1 or 0) in one trial is called Bernoulli distribution. That is, this random variable contains only two values. The probability mass function of this distribution can be expressed as Equation 4.1.

      $$\begin{equation}\tag{1} f(x)=P(X=x)=\begin{cases}p&\quad \text{for}\, x=1\\1-p&\quad \text{for}\, x=0\\ p&\quad \text{for}\, x=\text{otherwise} \end{cases} \end{equation}$$

      The above probability mass function (PMF) is determined by one parameter, the probability p. Therefore, this distribution can be expressed as

      $$X \sim \text{Bernoulli(p)} $$

      Example 5)
        If one dice is rolled, the random variables are:

      $$\begin{aligned}&\text{point 1 or 3 : x=1}\\ &\text{Any other value: x=0}\end{aligned}$$

      The probability mass function (PMF) and E(x) of this distribution ?

      $$\begin{aligned} &f(x)=\left(\frac{1}{3}\right)^x\left(\frac{2}{3}\right)^{1-x}\\ &\begin{aligned}E(x)&=1 \cdot \frac{1}{3}+0 \cdot \frac{2}{3}\\&=\frac{1}{3}\end{aligned} \end{aligned}$$

      Statistics such as PMF, CDF, expected value (mean) and variance of the Bernoulli distribution can be calculated using the bernoulli() class of the scipy.stats module.

      from scipy import stats
      np.around(stats.bernoulli.pmf(1, 1/3), 3)
      0.333
      np.around(stats.bernoulli.stats(1/3, moments="mv"), 3)
      array([0.333, 0.222])

      The binomial distribution refers to the probability distribution when the above Bernoulli distribution is tried several times. For example, if a coin is tossed 3 times and the number of heads is the random variable X, the range of the random variable is $R_x=\{0,\, 1,\, 2, \, 3\}$. In this case, if p is the probability of coming up heads, the probability for each variable value can be expressed as

      $$\begin{aligned} &f(0)=P(X=0)=P( \text{TTT})=(1-p)^3\\ &f(1)=P(X=1)=P( \text{TTH or THT or HTT})=3(1-p)^2 p\\ &f(2)=P(X=2)=P( \text{THH or HHT or HTH})=3(p^2(1-p))\\ &f(3)=P(X=3)=P(\text{HHH})=p^3 \end{aligned}$$

      Using the combination formula $^{\ref{combination}}$ for the above processes, the probability mass function of the binomial distribution is defined as Equation 2.

      $$\begin{align}\tag{2} &f(x)=P(X=x)=\binom{n}{k}p^k(1-p)^{n-k}\\ & k: 0,\, 1, \,2, \,\cdots,\, n \end{align}$$

      In case of n trials, the probability of success k times is calculated in the same way as above. In other words, the binomial distribution is characterized by the number of trials n and the probability p. That is, this distribution, along with its parameters, is briefly expressed as:

      $$X \sim \text{B(n, p)} $$

      The probability mass function of the binomial distribution can be calculated using the method pmf of the class scipy.stats.binom(x, n, p).

      Example 6)
        Visualize the binomial distribution of B(10, 0.3) and B(20, 0.6).

      px=[stats.binom.pmf(i, 10, 0.3) for i in range(21)]
      py=[stats.binom.pmf(i, 20, 0.6) for i in range(21)]
      data=pd.DataFrame([range(11), px[:11], py[10:21]]).T
      data.columns=["x","Px","Py"]
      data
      x Px Py
      0 0.0 0.0282480.117142
      1 1.0 0.1210610.159738
      2 2.0 0.2334740.179706
      3 3.0 0.2668280.165882
      4 4.0 0.2001210.124412
      5 5.0 0.1029190.074647
      6 6.0 0.0367570.034991
      7 7.0 0.0090020.012350
      8 8.0 0.0014470.003087
      9 9.0 0.0001380.000487
      10 10.0 0.0000060.000037
      plt.figure(figsize=(10, 5))
      plt.subplots_adjust(wspace=0.5)
      plt.subplot(1,2,1)
      plt.bar(range(21), px, label='B(10, 0.3)')
      plt.xlabel("x", size=13, weight="bold")
      plt.ylabel("PMF", size=13, weight="bold")
      plt.legend(loc='best')
      plt.subplot(1,2,2)
      plt.bar(range(21), py, label='B(20, 0.6)')
      plt.xlabel("x", size=13, weight="bold")
      plt.ylabel("PMF", size=13, weight="bold")
      plt.legend(loc='best')
      plt.show()
      Figure 4. Changes in the binomial distribution according to parameters.

      According to Figure 4, the parameters n and p of the binomial distribution show the change in the shape of the distribution. A binomial distribution is a multiple trial of the Bernoulli distribution, and the sum of each Bernoulli trial becomes the binomial distribution. In other words, the trial of tossing a coin is a Bernoulli probability distribution with Bernoulli(p) as the probability mass function. If these trials are repeated n times, the sum of each Bernoulli trial forms a binomial distribution, that is, B(n, p).

      If each of X1, \,X2, … is a random variable of Bernoulli(p), then the distribution of the sum of each variable (X=X1+X2+ …) has a binomial distribution B(n, p) It's possible. According to this definition, it is possible to create a new random variable by adding the events of two binomial distributions with the same probability.

      $$\begin{align}&X \sim B(n, p) \\ &Y \sim B(m, p)\end{align}$$

      The sum of two binomial variables (X and Y) can be expressed as a new random variable Z as follows.

      $$Z \sim B(n+m, p)$$

      Example 7)
        If the defective rate is 0.01 among the products of a certain factory, what is the probability that at least 2 defective products will be included if 30 products are randomly selected from among the products?

      The sample space for this event is $R_x=\{0,\, 1, \,2, \, \cdots\}$ and can be expressed as the following binomial distribution:

      $$X \sim B(30, 0.01)$$

      The probability that two or more defective items are included in this probability distribution is calculated as follows.

      $$P(X \ge 2) = 1 -P(X \le 2)$$

      The above calculation can be calculated with a probability mass function and a cumulative function as shown in the following code.

      pthan2=1-sum([stats.binom.pmf(i, 30, 0.01) for i in range(3)])
      round(pthan2, 4)
      0.0033
      round(1-stats.binom.cdf(2, 30, 0.01), 4)
      0.0033

      Example 8)
       A game is played with rules in which the prize money is determined according to the number specified in the three rounds of the dice.

      Rounds 0123
      prize-1000100020003000

      Determines the expected value of this game.

      This trial can be expressed as a binomial distribution as

      $$\begin{align} &X \sim B\left(3, \frac{1}{6} \right) \\ & f(x)=P(X=x)=\binom{3}{x}\left(\frac{1}{6}\right)^x\left(\frac{1}{6} \right)^{3-x}, \quad x=0,\;1,\;2,\;3 \end{align}$$
      P=np.array([-1000, 1000, 2000, 3000])
      pmf=[stats.binom.pmf(i, 3, 1/6) for i in range(4)]
      np.around(pmf, 3)
      array([0.579, 0.347, 0.069, 0.005])
      Ex=np.sum(P*pmf)
      round(Ex,3)
      -78.704

      As a result, a loss of approximately \$79 is expected.

      Example 9)
       In a daily trade of a stock, the probability that the close price increases by more than 1% relative to the open price is 0.45. If you buy the stock 10 times under an investment plan of buying the stock at the open price and selling it at the closing price when it rises 1%, how many times will this trade be completed on average? Also, what is the probability that this transaction will happen more than 5 times out of 10?

      In this case, the random variable X is the number of sells per day. $$\begin{align}&R_x=\{0,\,1,\,2,\, \cdots, \,10\} \\ &X \sim B(10, 0.45) \end{align}$$

      This distribution is shown in Figure 5.

      plt.figure(figsize=(6, 4))
      p=[stats.binom.pmf(i, 10, 0.45) for i in range(11)]
      plt.bar(range(11), p, label='B(10, 0.45)')
      plt.xlabel("x", size=13, weight="bold")
      plt.ylabel("PMF", size=13, weight="bold")
      plt.legend(loc='best')
      plt.show()
      Figure 5. Binomial distribution with B(10, 0.45).
      Ex=sum([i*stats.binom.pmf(i, 10, 0.45) for i in range(11)])
      round(Ex, 3)
      4.5

      This trade will happen on average 4 out of 10 times.

      p4=stats.binom.cdf(4, 10, 0.45)
      pthan5=1-p4
      round(pthan5,3)
      0.496

      The expected value and variance of the binomial distribution can be derived with the moment generating function (MX(t)). The nth moment of a moment generating function is equal to the nth derivative of that function. Therefore, the expected value, i.e., the mean, is a first-order moment, so it is derived as follows.

      $$\begin{align}&\begin{aligned}M_x(t)&=E(e^{tx})\\&=\sum^n_x e^{tx}\binom{n}{x} p^x(1-p)^{n-x}\\&=\sum^n_x \binom{n}{x} (pe^t)^x(1-p)^{n-x}\\&=(pe^t+1-p)^n\end{aligned}\\&\because\; (p+q)^n=\sum^n_x \binom{n}{x}p^x(1-p)^{n-x} \end{align}$$

      The variance is the second moment (second derivative) of the moment in the above expression and is calculated as follows.

      $$\sigma^2=\frac{d^2 (M_x(t)))}{dt}(0)-E(x^2)$$

      It is calculated by applying the diff() function of the sympy module.

      t, p, n=symbols("t p n")
      M=(p*exp(t)+1-p)**n
      Md1=M.diff(t)
      Md1
      $\quad \displaystyle \color{blue}{\frac{n p \left(p e^{t} - p + 1\right)^{n} e^{t}}{p e^{t} - p + 1}}$
      E=Md1.subs(t, 0)
      E
      $\quad \color{blue}{\text{np}}$
      Md2=Md1.diff(t)
      simplify(Md2)
      $\quad \color{blue}{\displaystyle \frac{n p \left(p \left(n - 1\right) \left(p e^{t} - p + 1\right)^{n + 1} e^{t} + \left(p e^{t} - p + 1\right)^{n + 2}\right) e^{t}}{\left(p e^{t} - p + 1\right)^{3}}}$
      Md20=Md2.subs(t, 0)
      Md20
      $\quad \color{blue}{\displaystyle n^{2} p^{2} - n p^{2} + n p}$
      var=Md20-E**2
      var
      $\quad \color{blue}{\displaystyle - n p^{2} + n p}$

      Summarizing the above results, the expected value and variance of the binomial distribution are as shown in Equation 3.

      $$\begin{align}\tag{3}&E(x)=np\\&Var(X)=np(1-p) \end{align}$$

      Example 10)
        If a student randomly selects an answer from 15 questions in the form of choosing one out of five, what is the probability of getting more than 5 correct answers? And what are the expected values and variances?

      It is the binomial probability with probability p=$\displaystyle \frac{1}{5}$ of getting a correct answer to a single problem.

      $$\begin{align} &R_x=\{0,\, 1,\, 2,\, 3,\, \cdots \} \\& f(x)=\binom{15}{x}\left(\frac{1}{5} \right)^x \left(\frac{4}{5} \right)^{15-x}\end{align}$$

      Use the sympy module to calculate directly from the above probability density function.

      n, x=symbols("n x")
      f=binomial(n, x)*(1/5)**x*(4/5)**(n-x)
      Fless4=[f.subs({n:15, x:i}) for i in range(5)]
      Fless4
      [0.0351843720888320,
       0.131941395333120,
       0.230897441832960,
       0.250138895319040,
       0.187604171489280]
      Fless4_np=np.array(Fless4, dtype=np.float64)
      np.around(Fless4_np, 3)
      array([0.035, 0.132, 0.231, 0.25 , 0.188])
      Fmore5=1-np.sum(Fless4_np)
      Fmore5
      0.16423372393676727

      The above code uses the sympy package. As a result, the data types of Fless4 and its elements are as follows.

      type(Fless4), type(Fless4[0])
      (list, sympy.core.numbers.Float)

      That is, the data type of the object is a list, and the data type of each element is the float type uniquely designated by sympy. The data type of these elements is different from the array data type of numpy. Therefore, in order to apply all numpy functions or classes to this object, the data type of each element must be newly designated. For this reason, dtype must be specified in the object Fless4_np in the code above.

      In addition to the direct calculation of the code above, the scipy.stats.binom.cdf() function can be applied.

      Fthan5=1-stats.binom.cdf(4, 15, 1/5)
      round(Fthan5, 3)
      0.164

      The mean and variance of this distribution are

      mu=15*1/5
      var=15*(1/5)*(1-1/5)
      print("mean:{:.3f}, variance:{:.3f}".format(mu, var))
      mean:3.000, variance:2.400
      mu, var=stats.binom.stats(15, 1/5, moments="m, v")
      print("mean:{:.3f}, variance:{:.3f}".format(mu, var))
      mean:3.000, variance:2.400

댓글

이 블로그의 인기 게시물

[Linear Algebra] 유사변환(Similarity transformation)

유사변환(Similarity transformation) n×n 차원의 정방 행렬 A, B 그리고 가역 행렬 P 사이에 식 1의 관계가 성립하면 행렬 A와 B는 유사행렬(similarity matrix)이 되며 행렬 A를 가역행렬 P와 B로 분해하는 것을 유사 변환(similarity transformation) 이라고 합니다. $$\tag{1} A = PBP^{-1} \Leftrightarrow P^{-1}AP = B $$ 식 2는 식 1의 양변에 B의 고유값을 고려한 것입니다. \begin{align}\tag{식 2} B - \lambda I &= P^{-1}AP – \lambda P^{-1}P\\ &= P^{-1}(AP – \lambda P)\\ &= P^{-1}(A - \lambda I)P \end{align} 식 2의 행렬식은 식 3과 같이 정리됩니다. \begin{align} &\begin{aligned}\textsf{det}(B - \lambda I ) & = \textsf{det}(P^{-1}(AP – \lambda P))\\ &= \textsf{det}(P^{-1}) \textsf{det}((A – \lambda I)) \textsf{det}(P)\\ &= \textsf{det}(P^{-1}) \textsf{det}(P) \textsf{det}((A – \lambda I))\\ &= \textsf{det}(A – \lambda I)\end{aligned}\\ &\begin{aligned}\because \; \textsf{det}(P^{-1}) \textsf{det}(P) &= \textsf{det}(P^{-1}P)\\ &= \textsf{det}(I)\end{aligned}\end{align} 유사행렬의 특성 유사행렬인 두 정방행렬 A와 B는 'A ~ B' 와 같

[matplotlib] 히스토그램(Histogram)

히스토그램(Histogram) 히스토그램은 확률분포의 그래픽적인 표현이며 막대그래프의 종류입니다. 이 그래프가 확률분포와 관계가 있으므로 통계적 요소를 나타내기 위해 많이 사용됩니다. plt.hist(X, bins=10)함수를 사용합니다. x=np.random.randn(1000) plt.hist(x, 10) plt.show() 위 그래프의 y축은 각 구간에 해당하는 갯수이다. 빈도수 대신 확률밀도를 나타내기 위해서는 위 함수의 매개변수 normed=True로 조정하여 나타낼 수 있다. 또한 매개변수 bins의 인수를 숫자로 전달할 수 있지만 리스트 객체로 지정할 수 있다. 막대그래프의 경우와 마찬가지로 각 막대의 폭은 매개변수 width에 의해 조정된다. y=np.linspace(min(x)-1, max(x)+1, 10) y array([-4.48810153, -3.54351935, -2.59893717, -1.65435499, -0.70977282, 0.23480936, 1.17939154, 2.12397372, 3.0685559 , 4.01313807]) plt.hist(x, y, normed=True) plt.show()

R 미분과 적분

내용 expression 미분 2차 미분 mosaic를 사용한 미분 적분 미분과 적분 R에서의 미분과 적분 함수는 expression()함수에 의해 생성된 표현식을 대상으로 합니다. expression expression(문자, 또는 식) 이 표현식의 평가는 eval() 함수에 의해 실행됩니다. > ex1<-expression(1+0:9) > ex1 expression(1 + 0:9) > eval(ex1) [1] 1 2 3 4 5 6 7 8 9 10 > ex2<-expression(u, 2, u+0:9) > ex2 expression(u, 2, u + 0:9) > ex2[1] expression(u) > ex2[2] expression(2) > ex2[3] expression(u + 0:9) > u<-0.9 > eval(ex2[3]) [1] 0.9 1.9 2.9 3.9 4.9 5.9 6.9 7.9 8.9 9.9 미분 D(표현식, 미분 변수) 함수로 미분을 실행합니다. 이 함수의 표현식은 expression() 함수로 생성된 객체이며 미분 변수는 다음 식의 분모의 변수를 의미합니다. $$\frac{d}{d \text{변수}}\text{표현식}$$ 이 함수는 어떤 함수의 미분의 결과를 표현식으로 반환합니다. > D(expression(2*x^3), "x") 2 * (3 * x^2) > eq<-expression(log(x)) > eq expression(log(x)) > D(eq, "x") 1/x > eq2<-expression(a/(1+b*exp(-d*x))); eq2 expression(a/(1 + b * exp(-d * x))) > D(eq2, "x") a * (b * (exp(-d * x) * d))/(1 + b