기본 콘텐츠로 건너뛰기

벡터와 행렬에 관련된 그림들

[python] 암묵적과 명시적 형변환(Type Conversion)

내용

형변환(Type Conversion)

형변환

pyhton에서 자료형은 숫자형과 문자형으로 구분합니다. 숫자형은 기본 자료형으로 정수, 실수, 복소수형으로 구성되어 있습니다. 이들은 근본적으로 동일한 자료형으로 연산과정에서 자동적으로 형변환이 이루어집니다. 이를 암묵적 형변환이라고 합니다. 반면에 문자형은 메모리에 저장 과정에서 이미 변환된 상태로서 자동적으로 변환이 이루어지지 않습니다. 그러므로 이들의 형변환은 특정한 함수에 의해 이루어 집니다. 이 과정을 명시적 형변환이라 합니다.

암묵적 형변환

자동적으로 일어나는 형변환을 의미합니다. 예를 들어 정수와 실수의 연산에서 정수는 자동적으로 실수형으로 변환됩니다.

x=2
y=3.14
z=x+y; z
5.140000000000001
for i in [x, y, z]:
    print(F"{i}의 자료형: {type(i)}")
2의 자료형: <class 'int'>
3.14의 자료형: <class 'float'>
5.140000000000001의 자료형: <lass 'float'>

명시적 형변환

다음 두 자료는 같은 수이지만 다른 자료형입니다.

a=3
b="3"
type(a), type(b)
(int, str)
a+b
~~TypeError: unsupported operand type(s) for +: 'int' and 'str'

위의 두 a와 b의 자료형은 다르기 때문에 에러가 발생합니다.

위 코드의 객체 b는 문자이지만 숫자로 변환이 가능한 자료입니다. 이 경우 a 와 같은 자료형 즉, 정수로 변환하기 위해 int() 함수를 사용하여 형변환할 수 있습니다. 이러한 명시적 변환은 유형캐스팅(typecasting)이라고 합니다.

유형캐스팅에 적용할 수 있는 함수는 다음과 같습니다.

함수 내용
int(x) 객체 x를 정수형으로 변환
float(x) 객체 x를 부동소수형으로 변환
complex(x) 객체 x를 복소수형으로 변환

위 함수의 적용은 다음과 같이 선언할 수 있습니다.

dataTypeName(객체)

이러한 유형캐스팅 과정에서 데이터의 손실이 발생할 수 있습니다.

int(b)
3
a+int(b)
6
a+float(b)
6.0
str(a)+b
'33'

댓글

이 블로그의 인기 게시물

[Linear Algebra] 유사변환(Similarity transformation)

유사변환(Similarity transformation) n×n 차원의 정방 행렬 A, B 그리고 가역 행렬 P 사이에 식 1의 관계가 성립하면 행렬 A와 B는 유사행렬(similarity matrix)이 되며 행렬 A를 가역행렬 P와 B로 분해하는 것을 유사 변환(similarity transformation) 이라고 합니다. $$\tag{1} A = PBP^{-1} \Leftrightarrow P^{-1}AP = B $$ 식 2는 식 1의 양변에 B의 고유값을 고려한 것입니다. \begin{align}\tag{식 2} B - \lambda I &= P^{-1}AP – \lambda P^{-1}P\\ &= P^{-1}(AP – \lambda P)\\ &= P^{-1}(A - \lambda I)P \end{align} 식 2의 행렬식은 식 3과 같이 정리됩니다. \begin{align} &\begin{aligned}\textsf{det}(B - \lambda I ) & = \textsf{det}(P^{-1}(AP – \lambda P))\\ &= \textsf{det}(P^{-1}) \textsf{det}((A – \lambda I)) \textsf{det}(P)\\ &= \textsf{det}(P^{-1}) \textsf{det}(P) \textsf{det}((A – \lambda I))\\ &= \textsf{det}(A – \lambda I)\end{aligned}\\ &\begin{aligned}\because \; \textsf{det}(P^{-1}) \textsf{det}(P) &= \textsf{det}(P^{-1}P)\\ &= \textsf{det}(I)\end{aligned}\end{align} 유사행렬의 특성 유사행렬인 두 정방행렬 A와 B는 'A ~ B' 와 같...

[sympy] Sympy객체의 표현을 위한 함수들

Sympy객체의 표현을 위한 함수들 General simplify(x): 식 x(sympy 객체)를 간단히 정리 합니다. import numpy as np from sympy import * x=symbols("x") a=sin(x)**2+cos(x)**2 a $\sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}$ simplify(a) 1 simplify(b) $\frac{x^{3} + x^{2} - x - 1}{x^{2} + 2 x + 1}$ simplify(b) x - 1 c=gamma(x)/gamma(x-2) c $\frac{\Gamma\left(x\right)}{\Gamma\left(x - 2\right)}$ simplify(c) $\displaystyle \left(x - 2\right) \left(x - 1\right)$ 위의 예들 중 객체 c의 감마함수(gamma(x))는 확률분포 등 여러 부분에서 사용되는 표현식으로 다음과 같이 정의 됩니다. 감마함수는 음이 아닌 정수를 제외한 모든 수에서 정의됩니다. 식 1과 같이 자연수에서 감마함수는 factorial(!), 부동소수(양의 실수)인 경우 적분을 적용하여 계산합니다. $$\tag{식 1}\Gamma(n) =\begin{cases}(n-1)!& n:\text{자연수}\\\int^\infty_0x^{n-1}e^{-x}\,dx& n:\text{부동소수}\end{cases}$$ x=symbols('x') gamma(x).subs(x,4) $\displaystyle 6$ factorial 계산은 math.factorial() 함수를 사용할 수 있습니다. import math math.factorial(3) 6 a=gamma(x).subs(x,4.5) a.evalf(3) 11.6 simpilfy() 함수의 알고리즘은 식에서 공통사항을 찾아 정리하...

sympy.solvers로 방정식해 구하기

sympy.solvers로 방정식해 구하기 대수 방정식을 해를 계산하기 위해 다음 함수를 사용합니다. sympy.solvers.solve(f, *symbols, **flags) f=0, 즉 동차방정식에 대해 지정한 변수의 해를 계산 f : 식 또는 함수 symbols: 식의 해를 계산하기 위한 변수, 변수가 하나인 경우는 생략가능(자동으로 인식) flags: 계산 또는 결과의 방식을 지정하기 위한 인수들 dict=True: {x:3, y:1}같이 사전형식, 기본값 = False set=True :{(x,3),(y,1)}같이 집합형식, 기본값 = False ratioal=True : 실수를 유리수로 반환, 기본값 = False positive=True: 해들 중에 양수만을 반환, 기본값 = False 예 $x^2=1$의 해를 결정합니다. solve() 함수에 적용하기 위해서는 다음과 같이 식의 한쪽이 0이 되는 형태인 동차식으로 구성되어야 합니다. $$x^2-1=0$$ import numpy as np from sympy import * x = symbols('x') solve(x**2-1, x) [-1, 1] 위 식은 계산 과정은 다음과 같습니다. $$\begin{aligned}x^2-1=0 \rightarrow (x+1)(x-1)=0 \\ x=1 \; \text{or}\; -1\end{aligned}$$ 예 $x^4=1$의 해를 결정합니다. solve() 함수의 인수 set=True를 지정하였으므로 결과는 집합(set)형으로 반환됩니다. eq=x**4-1 solve(eq, set=True) ([x], {(-1,), (-I,), (1,), (I,)}) 위의 경우 I는 복소수입니다.즉 위 결과의 과정은 다음과 같습니다. $$x^4-1=(x^2+1)(x+1)(x-1)=0 \rightarrow x=\pm \sqrt{-1}, \; \pm 1=\pm i,\; \pm1$$ 실수...