기본 콘텐츠로 건너뛰기

[ML] 결정트리(Decision Tree) 모델

피보나치 수열 생성(Fibonacci Sequence)

피보나치 수열은 앞의 두 수를 더하여 다음 수를 생성하는 수열로서 다음과 같이 코드를 작성할 수 있습니다.

def fiboS(n):
    #n=피보나치 수열의 갯수
    fiboseq=np.array([1, 2])
    for i in range(2, n+1):
        fiboseq=np.append(fiboseq, fiboseq[i-2]+fiboseq[i-1])
    return(fiboseq)

fiboS(10)
array([  1,   2,   3,   5,   8,  13,  21,  34,  55,  89, 144])

위 결과는 numpy array로서 이들의 합을 위해서는 np객체.sum()을 적용합니다.
fiboS(10).sum()
375

위 프로그램의 n은 수열의 갯수로서 정수입니다. 이것은 range() 함수의 인수이기 때문입니다. 정수형은 자릿수등의 한계가 존재하므로 얼마 이상의 값에서는 예기치 못한 값을 반환합니다.

fiboS(50)
array([          1,           2,           3,           5,           8,
                13,          21,          34,          55,          89,
               ...
         267914296,   433494437,   701408733,  1134903170,  1836311903,
       -1323752223,   512559680,  -811192543,  -298632863, -1109825406,
       -1408458269])

그러므로 피보나치 수열을 생성할 경우 원소의 갯수가 아닌 그 합을 기준으로 하여 프로그램을 수정할 수 있습니다. 수정된 프로그램 역시 자료형의 크기에 한계가 있으므로 첫번째 프로그램보다 약간 개선된 결과를 보이지만 한계가 존재합니다.

def fiboS(n):
    #n=피보나치 수열의 갯수
    fiboseq=np.array([1, 2])
    while fiboseq.sum()<=n:
        fiboseq=np.append(fiboseq, fiboseq[-2]+fiboseq[-1])
    return(fiboseq)

fiboS(400000000.0)

array([        1,         2,         3,         5,         8,        13,
              21,        34,        55,        89,       144,       233,
             377,       610,       987,      1597,      2584,      4181,
            6765,     10946,     17711,     28657,     46368,     75025,
          121393,    196418,    317811,    514229,    832040,   1346269,
         2178309,   3524578,   5702887,   9227465,  14930352,  24157817,
        39088169,  63245986, 102334155, 165580141])

피보나치 수열의 홀수 항들의 합은 다음과 같이 계산할 수 있습니다.
re=fiboS(10000)
re1=[re[i] for i in range(len(re)) if i%2 !=0]
re1, sum(re1)
([2, 5, 13, 34, 89, 233, 610, 1597, 4181], 6764)

댓글

이 블로그의 인기 게시물

[Linear Algebra] 유사변환(Similarity transformation)

유사변환(Similarity transformation) n×n 차원의 정방 행렬 A, B 그리고 가역 행렬 P 사이에 식 1의 관계가 성립하면 행렬 A와 B는 유사행렬(similarity matrix)이 되며 행렬 A를 가역행렬 P와 B로 분해하는 것을 유사 변환(similarity transformation) 이라고 합니다. $$\tag{1} A = PBP^{-1} \Leftrightarrow P^{-1}AP = B $$ 식 2는 식 1의 양변에 B의 고유값을 고려한 것입니다. \begin{align}\tag{식 2} B - \lambda I &= P^{-1}AP – \lambda P^{-1}P\\ &= P^{-1}(AP – \lambda P)\\ &= P^{-1}(A - \lambda I)P \end{align} 식 2의 행렬식은 식 3과 같이 정리됩니다. \begin{align} &\begin{aligned}\textsf{det}(B - \lambda I ) & = \textsf{det}(P^{-1}(AP – \lambda P))\\ &= \textsf{det}(P^{-1}) \textsf{det}((A – \lambda I)) \textsf{det}(P)\\ &= \textsf{det}(P^{-1}) \textsf{det}(P) \textsf{det}((A – \lambda I))\\ &= \textsf{det}(A – \lambda I)\end{aligned}\\ &\begin{aligned}\because \; \textsf{det}(P^{-1}) \textsf{det}(P) &= \textsf{det}(P^{-1}P)\\ &= \textsf{det}(I)\end{aligned}\end{align} 유사행렬의 특성 유사행렬인 두 정방행렬 A와 B는 'A ~ B' 와 같

[matplotlib] 히스토그램(Histogram)

히스토그램(Histogram) 히스토그램은 확률분포의 그래픽적인 표현이며 막대그래프의 종류입니다. 이 그래프가 확률분포와 관계가 있으므로 통계적 요소를 나타내기 위해 많이 사용됩니다. plt.hist(X, bins=10)함수를 사용합니다. x=np.random.randn(1000) plt.hist(x, 10) plt.show() 위 그래프의 y축은 각 구간에 해당하는 갯수이다. 빈도수 대신 확률밀도를 나타내기 위해서는 위 함수의 매개변수 normed=True로 조정하여 나타낼 수 있다. 또한 매개변수 bins의 인수를 숫자로 전달할 수 있지만 리스트 객체로 지정할 수 있다. 막대그래프의 경우와 마찬가지로 각 막대의 폭은 매개변수 width에 의해 조정된다. y=np.linspace(min(x)-1, max(x)+1, 10) y array([-4.48810153, -3.54351935, -2.59893717, -1.65435499, -0.70977282, 0.23480936, 1.17939154, 2.12397372, 3.0685559 , 4.01313807]) plt.hist(x, y, normed=True) plt.show()

R 미분과 적분

내용 expression 미분 2차 미분 mosaic를 사용한 미분 적분 미분과 적분 R에서의 미분과 적분 함수는 expression()함수에 의해 생성된 표현식을 대상으로 합니다. expression expression(문자, 또는 식) 이 표현식의 평가는 eval() 함수에 의해 실행됩니다. > ex1<-expression(1+0:9) > ex1 expression(1 + 0:9) > eval(ex1) [1] 1 2 3 4 5 6 7 8 9 10 > ex2<-expression(u, 2, u+0:9) > ex2 expression(u, 2, u + 0:9) > ex2[1] expression(u) > ex2[2] expression(2) > ex2[3] expression(u + 0:9) > u<-0.9 > eval(ex2[3]) [1] 0.9 1.9 2.9 3.9 4.9 5.9 6.9 7.9 8.9 9.9 미분 D(표현식, 미분 변수) 함수로 미분을 실행합니다. 이 함수의 표현식은 expression() 함수로 생성된 객체이며 미분 변수는 다음 식의 분모의 변수를 의미합니다. $$\frac{d}{d \text{변수}}\text{표현식}$$ 이 함수는 어떤 함수의 미분의 결과를 표현식으로 반환합니다. > D(expression(2*x^3), "x") 2 * (3 * x^2) > eq<-expression(log(x)) > eq expression(log(x)) > D(eq, "x") 1/x > eq2<-expression(a/(1+b*exp(-d*x))); eq2 expression(a/(1 + b * exp(-d * x))) > D(eq2, "x") a * (b * (exp(-d * x) * d))/(1 + b