기본 콘텐츠로 건너뛰기

[matplotlib]quiver()함수

삼각함수의 주기적 특성

삼각함수 주기적 특성

삼각함수는 일정한 범위를 기준으로 반복되는 주기함수(periodic function)입니다. 예로 cos(x)와 cos(2x)의 그래프를 그려보면 그림 1과 같습니다.

그림 1. cos(x)와 cos(2x)
x=np.linspace(0, 3*np.pi, 100)
y=np.cos(x)
y2=np.cos(2*x)
fig, ax=plt.subplots(figsize=(4,2))
ax.plot(x, y, color="b", label="cos(x)")
ax.plot(x, y2, color="r", label="cos(2x)")
ax.vlines(2*np.pi, 0, 1, ls="dotted", color="b")
ax.hlines(0.5, 0, 2*np.pi, ls="dotted", color="b", label="period for cos(x)")
ax.hlines(0.3, 0, np.pi, ls="dotted", color="r", label="period for cos(2x)")
ax.vlines(np.pi, -1, 1, ls="dotted", color="g", label="amplititude")
ax.spines['left'].set_position(("data", 0))
ax.spines['bottom'].set_position(("data", 0))
ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)
x1=[0, np.pi/2, np.pi,3*np.pi/2, 2*np.pi,5*np.pi/2, 3*np.pi]
ax.set_xticks(x1, ['0', r"$\frac{\pi}{2}$", r"$\pi$", r"$\frac{3\pi}{2}$", r"$2\pi$",r"$\frac{5\pi}{2}$", r"$3\pi$"])
ax.set_ylim(-1.5, 1.5)
ax.legend(bbox_to_anchor=(1, 0.9))
plt.show()

그림 1에서 cos(x)의 경우 2π를 주기(period)로 같은 그래프가 반복됩니다. 반면에 cos(2x)의 경우는 다음과 같이 π를 주기로 반복됩니다.

0 ≤ θ ≤ 2π 이므로 θ = 2x일 경우는 0 ≤ 2x ≤ 2π → 0 ≤ x ≤ π가 됩니다.

또한 각 그래프에서 함수의 대응값 즉, y축의 최대값과 최소값의 차이를 진폭(amplitude)라고 합니다.

cos(θ)의 범위는 다음 구간내에서 나타나므로 최대값과 최소값의 차이는 2이므로 진폭은 2입니다.

-1≤cos(θ)≤1

이러한 진폭은 각 그래프의 주기와 관계 없이 그 함수의 배수에 의해 결정됩니다. 그러므로 cos(2x)의 진폭 역시 2이지만 5cos(2x)는 진폭이 2인 cos(2x)를 5배 한 것으로 진폭은 10이 됩니다. 즉, 다음의 5cos(2x)의 그래프와 같이 cos(2x)의 최대값과 최소값이 5배 증가, 감소를 보이는 형태로서 주기는 같지만 진폭(amplitude)이 증가되는 형태를 나타냅니다.

그림. cos(2x)와 5cos(2x)

예 1)

다음 함수들의 주기와 진폭 ?

\begin{align}y &=2\sin(2x)\\y& =\frac{3}{2} \cos\left(\frac{x}{2}\right) \end{align}

  • y = 2sin(2x)
    • 0 ≤ 2x ≤ 2π → 0 ≤ x ≤ π, 즉, 주기는π
    • -1 ≤ sin(2x) ≤ 1 → -2 ≤ 2sin(2x) ≤ 2 그러므로 진폭은 4
  • $y=\frac{3}{2} \cos\left(\frac{x}{2}\right)$
    • $0≤\frac{x}{2}≤2\pi \rightarrow 0≤x≤4\pi$, 즉, 주기는 4π
    • $-1≤\cos\left(\frac{x}{2}\right)≤1 \rightarrow -\frac{3}{2}≤\frac{3}{2}\cos\left(\frac{x}{2}\right)≤\frac{3}{2}$ 그러므로 진폭은 3

예 2)

다음 함수들의 그래프?

$$y=\sin(x),\quad y=\sin(\frac{x}{2}),y=\quad 3\sin(\frac{x}{2})$$

sin(x)함수 역시 2π의 주기를 갖습니다. 그러므로 $\frac{x}{2}$의 경우 주기는 다음과 같이 전환됩니다.

0 ≤ $\frac{x}{2}$ ≤ 2π → 0 ≤ x ≤ 4π

x=np.linspace(0, 4*np.pi, 100)
y=np.sin(x)
y2=np.sin(x/2)
y3=3*np.sin(x/2)
fig, ax=plt.subplots(figsize=(4,2))
ax.plot(x, y, color="b", label="y=sin(x)")
ax.plot(x, y2, color="r", label=r"$y=\sin\left(\frac{x}{2}\right)$")
ax.plot(x, y3, color="g", label=r"$y=3\sin\left(\frac{x}{2}\right)$")
ax.spines['left'].set_position(("data", 0))
ax.spines['bottom'].set_position(("data", 0))
ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)
x1=[0, np.pi/2, np.pi,3*np.pi/2, 2*np.pi,5*np.pi/2, 3*np.pi, 7*np.pi/2, 4*np.pi]
ax.set_xticks(x1, ['0', r"$\frac{\pi}{2}$", r"$\pi$", r"$\frac{3\pi}{2}$", r"$2\pi$",r"$\frac{5\pi}{2}$", r"$3\pi$", r"$\frac{7\pi}{2}$", r"$4\pi$"])
ax.legend(bbox_to_anchor=(1, 0.9))
plt.show()

예 3)

sin(θ)=-1인 모든θ?

θ = …, -π/2, 3π/2, … = 2nπ - $\frac{\pi}{2}$

예 4)

cos(2θ) = $\frac{1}{2}$인 모든 θ?

2θ = 2nπ ± $\frac{\pi}{3}$ → θ = nπ ± $\frac{\pi}{6}$

예 5)

[0, 2π]구간에서 $2\sin(t)-1-\sin^2(t)=0$의 해?

\begin{align}\sin(t)&=x\\ x^2-2x+1&=(x-1)^2=0\\\Rightarrow&\; x=1\\\sin(t)=1 & → t=\frac{π}{2} \end{align}

sympy.solve(식, 변수) 함수를 적용합니다.

solve(식, 변수)

  • 식: 동차방정식(homogeneous equation)이어야 합니다.
  • 동차방정식은 다음과 같이 식의 결과가 0이 되는 방정식입니다.
    • $ax^2+bx+c=0$
t=symbols('t')
solve(2*sin(t)-1-sin(t)**2, t)
[pi/2]

댓글

이 블로그의 인기 게시물

[Linear Algebra] 유사변환(Similarity transformation)

유사변환(Similarity transformation) n×n 차원의 정방 행렬 A, B 그리고 가역 행렬 P 사이에 식 1의 관계가 성립하면 행렬 A와 B는 유사행렬(similarity matrix)이 되며 행렬 A를 가역행렬 P와 B로 분해하는 것을 유사 변환(similarity transformation) 이라고 합니다. $$\tag{1} A = PBP^{-1} \Leftrightarrow P^{-1}AP = B $$ 식 2는 식 1의 양변에 B의 고유값을 고려한 것입니다. \begin{align}\tag{식 2} B - \lambda I &= P^{-1}AP – \lambda P^{-1}P\\ &= P^{-1}(AP – \lambda P)\\ &= P^{-1}(A - \lambda I)P \end{align} 식 2의 행렬식은 식 3과 같이 정리됩니다. \begin{align} &\begin{aligned}\textsf{det}(B - \lambda I ) & = \textsf{det}(P^{-1}(AP – \lambda P))\\ &= \textsf{det}(P^{-1}) \textsf{det}((A – \lambda I)) \textsf{det}(P)\\ &= \textsf{det}(P^{-1}) \textsf{det}(P) \textsf{det}((A – \lambda I))\\ &= \textsf{det}(A – \lambda I)\end{aligned}\\ &\begin{aligned}\because \; \textsf{det}(P^{-1}) \textsf{det}(P) &= \textsf{det}(P^{-1}P)\\ &= \textsf{det}(I)\end{aligned}\end{align} 유사행렬의 특성 유사행렬인 두 정방행렬 A와 B는 'A ~ B' 와 같...

[sympy] Sympy객체의 표현을 위한 함수들

Sympy객체의 표현을 위한 함수들 General simplify(x): 식 x(sympy 객체)를 간단히 정리 합니다. import numpy as np from sympy import * x=symbols("x") a=sin(x)**2+cos(x)**2 a $\sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}$ simplify(a) 1 simplify(b) $\frac{x^{3} + x^{2} - x - 1}{x^{2} + 2 x + 1}$ simplify(b) x - 1 c=gamma(x)/gamma(x-2) c $\frac{\Gamma\left(x\right)}{\Gamma\left(x - 2\right)}$ simplify(c) $\displaystyle \left(x - 2\right) \left(x - 1\right)$ 위의 예들 중 객체 c의 감마함수(gamma(x))는 확률분포 등 여러 부분에서 사용되는 표현식으로 다음과 같이 정의 됩니다. 감마함수는 음이 아닌 정수를 제외한 모든 수에서 정의됩니다. 식 1과 같이 자연수에서 감마함수는 factorial(!), 부동소수(양의 실수)인 경우 적분을 적용하여 계산합니다. $$\tag{식 1}\Gamma(n) =\begin{cases}(n-1)!& n:\text{자연수}\\\int^\infty_0x^{n-1}e^{-x}\,dx& n:\text{부동소수}\end{cases}$$ x=symbols('x') gamma(x).subs(x,4) $\displaystyle 6$ factorial 계산은 math.factorial() 함수를 사용할 수 있습니다. import math math.factorial(3) 6 a=gamma(x).subs(x,4.5) a.evalf(3) 11.6 simpilfy() 함수의 알고리즘은 식에서 공통사항을 찾아 정리하...

sympy.solvers로 방정식해 구하기

sympy.solvers로 방정식해 구하기 대수 방정식을 해를 계산하기 위해 다음 함수를 사용합니다. sympy.solvers.solve(f, *symbols, **flags) f=0, 즉 동차방정식에 대해 지정한 변수의 해를 계산 f : 식 또는 함수 symbols: 식의 해를 계산하기 위한 변수, 변수가 하나인 경우는 생략가능(자동으로 인식) flags: 계산 또는 결과의 방식을 지정하기 위한 인수들 dict=True: {x:3, y:1}같이 사전형식, 기본값 = False set=True :{(x,3),(y,1)}같이 집합형식, 기본값 = False ratioal=True : 실수를 유리수로 반환, 기본값 = False positive=True: 해들 중에 양수만을 반환, 기본값 = False 예 $x^2=1$의 해를 결정합니다. solve() 함수에 적용하기 위해서는 다음과 같이 식의 한쪽이 0이 되는 형태인 동차식으로 구성되어야 합니다. $$x^2-1=0$$ import numpy as np from sympy import * x = symbols('x') solve(x**2-1, x) [-1, 1] 위 식은 계산 과정은 다음과 같습니다. $$\begin{aligned}x^2-1=0 \rightarrow (x+1)(x-1)=0 \\ x=1 \; \text{or}\; -1\end{aligned}$$ 예 $x^4=1$의 해를 결정합니다. solve() 함수의 인수 set=True를 지정하였으므로 결과는 집합(set)형으로 반환됩니다. eq=x**4-1 solve(eq, set=True) ([x], {(-1,), (-I,), (1,), (I,)}) 위의 경우 I는 복소수입니다.즉 위 결과의 과정은 다음과 같습니다. $$x^4-1=(x^2+1)(x+1)(x-1)=0 \rightarrow x=\pm \sqrt{-1}, \; \pm 1=\pm i,\; \pm1$$ 실수...