기본 콘텐츠로 건너뛰기

[math] 정적분의 특성

[Math] 미분 문제

미분의 응용 문제

예)

자동차 A, B가 각각 서와 동쪽에 500m 의 간격을 두고 있습니다. A는 B를 향해 35m/h의 속도로 이동하고 B는 남쪽으로 50m/h의 속도로 이동합니다. 3시간 후에 두차 사이의 거리의 변화율? 증가 또는 감소?

위 문제는 그림의 z의 변화율을 계산하는 것입니다. 위의 x, y, z은 t에 대한 함수로 인식할 수 있습니다.

\begin{align}x^2(t)+y^2(t)&=z^2(t)\\ \frac{d(x(t)}{dt}=-35&\quad \frac{d(y(t))}{dt}=50\end{align}

3시간 후 x=500-35⋅3=395, y=50*3=150

from sympy import *
t=symbols('t')
x=Function('x')(t);x
x(t)
y=Function('y')(t);y 
y(t)
z=Function('z')(t);z
z(t)
eq=x**2+y**2-z**2;eq

$x^{2}{\left(t \right)} + y^{2}{\left(t \right)} - z^{2}{\left(t \right)}$

deq=diff(eq, t);deq

$2 x{\left(t \right)} \frac{d}{d t} x{\left(t \right)} + 2 y{\left(t \right)} \frac{d}{d t} y{\left(t \right)} - 2 z{\left(t \right)} \frac{d}{d t} z{\left(t \right)}$

dz=solve(deq, diff(z, t)); dz
(x(t)*Derivative(x(t), t) + y(t)*Derivative(y(t), t))/z(t)
x1=500-35*3
y1=50*3
z1=(x1**2+y1**2)**0.5;z1
422.5221887664599
dz[0].subs({x:x1, diff(x, t):-35, y:y1, diff(y, t):50, z:z1})
-14.9696280293957
임계점(critical point) 정의

함수 f(x)의 점 c에 대한 미분값이 0 또는 존재하지 않는다면 x = c를 critical point 라고 합니다.

f'(c)=0 또는 f'(c)가 존재하지 않는다. ⇒ 임계점

예)

다음함수의 임계점?

1) f(x)=6x5+33x4-30x3+100

함수의 1차미분값이 0인 위치를 결정합니다.

x=symbols('x')
f=6*x**5+33*x**4-30*x**3+100;f

$6 x^{5} + 33 x^{4} - 30 x^{3} + 100$

df=diff(f, x);df

$30 x^{4} + 132 x^{3} - 90 x^{2}$

cp=solve(df, x);cp
[-5, 0, 3/5]

2) $g(t)=\sqrt[3]{t^2}(2t-1)$

t=symbols('t')
g=t**(Rational("2/3"))*(2*t-1);g

$t^{\frac{2}{3}} \left(2 t - 1\right)$

dg=diff(g, t);dg

$2 t^{\frac{2}{3}} + \frac{2 \left(2 t - 1\right)}{3 \sqrt[3]{t}}$

factor(dg)

$\frac{2 \left(5 t - 1\right)}{3 \sqrt[3]{t}}$

$\frac{10t-2}{3t^{\frac{1}{3}}}=0$의 해는 solve() 함수를 사용합니다. 이 방정식에서 t=0이면 분모가 0이므로 정의되지 않습니다. 그러므로 t≠0라는 조건에서 해를 계산합니다.

cp=solve(dg, t);cp
[1/5]

3) $R(x)=\frac{x^2+1}{x^2-x-6}$

x=symbols('x')
r=(x**2+1)/(x**2-x-6);r

$\frac{x^{2} + 1}{x^{2} - x - 6}$

dr=diff(r, x); dr

$\frac{2 x}{x^{2} - x - 6} + \frac{\left(1 - 2 x\right) \left(x^{2} + 1\right)}{\left(x^{2} - x - 6\right)^{2}}$

cp=solve(dr, x);cp
[-7 + 5*sqrt(2), -5*sqrt(2) - 7]

4) y=6x-4cos(3x)

x=symbols('x')
y=6*x-4*cos(3*x);y
6x−4cos(3x)
dy=diff(y, x);dy
12sin(3x)+6
cp=solve(dy, x);cp
[-pi/18, 7*pi/18]

sin(x), cos(x)와 같은 함수는 2𝝿를 주기로 반복합니다. 즉, 변화율이 0이 부분이 반복됩니다. 위 그래프를 그려보면 다음과 같습니다.

그러므로 sin, cos과 관련된 함수의 해를 계산할 경우 해의 범위에 대한 조건이 지정되어야 합니다.

댓글

이 블로그의 인기 게시물

[Linear Algebra] 유사변환(Similarity transformation)

유사변환(Similarity transformation) n×n 차원의 정방 행렬 A, B 그리고 가역 행렬 P 사이에 식 1의 관계가 성립하면 행렬 A와 B는 유사행렬(similarity matrix)이 되며 행렬 A를 가역행렬 P와 B로 분해하는 것을 유사 변환(similarity transformation) 이라고 합니다. $$\tag{1} A = PBP^{-1} \Leftrightarrow P^{-1}AP = B $$ 식 2는 식 1의 양변에 B의 고유값을 고려한 것입니다. \begin{align}\tag{식 2} B - \lambda I &= P^{-1}AP – \lambda P^{-1}P\\ &= P^{-1}(AP – \lambda P)\\ &= P^{-1}(A - \lambda I)P \end{align} 식 2의 행렬식은 식 3과 같이 정리됩니다. \begin{align} &\begin{aligned}\textsf{det}(B - \lambda I ) & = \textsf{det}(P^{-1}(AP – \lambda P))\\ &= \textsf{det}(P^{-1}) \textsf{det}((A – \lambda I)) \textsf{det}(P)\\ &= \textsf{det}(P^{-1}) \textsf{det}(P) \textsf{det}((A – \lambda I))\\ &= \textsf{det}(A – \lambda I)\end{aligned}\\ &\begin{aligned}\because \; \textsf{det}(P^{-1}) \textsf{det}(P) &= \textsf{det}(P^{-1}P)\\ &= \textsf{det}(I)\end{aligned}\end{align} 유사행렬의 특성 유사행렬인 두 정방행렬 A와 B는 'A ~ B' 와 같

[matplotlib] 히스토그램(Histogram)

히스토그램(Histogram) 히스토그램은 확률분포의 그래픽적인 표현이며 막대그래프의 종류입니다. 이 그래프가 확률분포와 관계가 있으므로 통계적 요소를 나타내기 위해 많이 사용됩니다. plt.hist(X, bins=10)함수를 사용합니다. x=np.random.randn(1000) plt.hist(x, 10) plt.show() 위 그래프의 y축은 각 구간에 해당하는 갯수이다. 빈도수 대신 확률밀도를 나타내기 위해서는 위 함수의 매개변수 normed=True로 조정하여 나타낼 수 있다. 또한 매개변수 bins의 인수를 숫자로 전달할 수 있지만 리스트 객체로 지정할 수 있다. 막대그래프의 경우와 마찬가지로 각 막대의 폭은 매개변수 width에 의해 조정된다. y=np.linspace(min(x)-1, max(x)+1, 10) y array([-4.48810153, -3.54351935, -2.59893717, -1.65435499, -0.70977282, 0.23480936, 1.17939154, 2.12397372, 3.0685559 , 4.01313807]) plt.hist(x, y, normed=True) plt.show()

R 미분과 적분

내용 expression 미분 2차 미분 mosaic를 사용한 미분 적분 미분과 적분 R에서의 미분과 적분 함수는 expression()함수에 의해 생성된 표현식을 대상으로 합니다. expression expression(문자, 또는 식) 이 표현식의 평가는 eval() 함수에 의해 실행됩니다. > ex1<-expression(1+0:9) > ex1 expression(1 + 0:9) > eval(ex1) [1] 1 2 3 4 5 6 7 8 9 10 > ex2<-expression(u, 2, u+0:9) > ex2 expression(u, 2, u + 0:9) > ex2[1] expression(u) > ex2[2] expression(2) > ex2[3] expression(u + 0:9) > u<-0.9 > eval(ex2[3]) [1] 0.9 1.9 2.9 3.9 4.9 5.9 6.9 7.9 8.9 9.9 미분 D(표현식, 미분 변수) 함수로 미분을 실행합니다. 이 함수의 표현식은 expression() 함수로 생성된 객체이며 미분 변수는 다음 식의 분모의 변수를 의미합니다. $$\frac{d}{d \text{변수}}\text{표현식}$$ 이 함수는 어떤 함수의 미분의 결과를 표현식으로 반환합니다. > D(expression(2*x^3), "x") 2 * (3 * x^2) > eq<-expression(log(x)) > eq expression(log(x)) > D(eq, "x") 1/x > eq2<-expression(a/(1+b*exp(-d*x))); eq2 expression(a/(1 + b * exp(-d * x))) > D(eq2, "x") a * (b * (exp(-d * x) * d))/(1 + b