기본 콘텐츠로 건너뛰기

pandas_ta를 적용한 통계적 인덱스 지표

About Aanaconda

1. 삭제방법
파이썬 아나콘다 사용시 삭제할 필요가 있습니다.
윈도우의 경우 제어판의 프로그램 추가/삭제에서 이 명령을 시행할 수 없기 때문에 설치한 디렉토리로 이동하여 uninstall.exe를 직접 시행하여야 합니다.
일반적으로 이 프로그램은 다음 경로에 존재합니다.
"C://사용자/컴퓨터 이름/ Anaconda3/ " : just me 버전으로 설치할 경우의 경로
"C://ProgramData/Anaconda3/": all user 버전으로 설치할 경우의 경로. ProgramData 디렉토리는 숨김폴더 이므로 메뉴에서 보기-숨김항목 표시를 체크 한후 찾을 수 있습니다.
이 디렉토리내에 존재하는 Uninstall_Anaconda3.exe를 실행하여 삭제합니다.

2. spyder upgrade
윈도의 CMD에서
우분투의 터미널에서 다음을 실행 합니다.
conda install -c anaconda spyder

in unbuntu
conda update conda
conda update anaconda
conda update spyder

3. 우분투에서 anaconda 설치
1) anaconda 홈에서 적합한 설치파일을 다운
2) 터미널에서 anaconda를 다운 받은 디렉토리로 진입
cd home/---/문서
3) 설치
# sha256sum Anaconda3-5.3.1-Linux-x86_64.sh
위 명령은 다운로드 받은 파일의 해시태그를 나타냅니다. 결과인 해시태그가 맞는지 아래의 사이트로 이동하여 확인합니다.
http://docs.anaconda.com/anaconda/insstall/hashes/lin-3-64
맞으면 다음과 같이설치합니다.
#bash  Anaconda3-5.3.1-Linux-x86_64.sh

4. Jupyter notebook browser 설정

  1. .jupter 폴더 내에 존재하는 jupyter_notebook_config.py 이동
  2. 이 파일내에 c.NotebookApp.browser =""에 사용할 browser의 경로를 입력
  3. 경로에서 "\"는 '/'로 교환하고 마지막에 %s를 첨가

댓글

이 블로그의 인기 게시물

[Linear Algebra] 유사변환(Similarity transformation)

유사변환(Similarity transformation) n×n 차원의 정방 행렬 A, B 그리고 가역 행렬 P 사이에 식 1의 관계가 성립하면 행렬 A와 B는 유사행렬(similarity matrix)이 되며 행렬 A를 가역행렬 P와 B로 분해하는 것을 유사 변환(similarity transformation) 이라고 합니다. $$\tag{1} A = PBP^{-1} \Leftrightarrow P^{-1}AP = B $$ 식 2는 식 1의 양변에 B의 고유값을 고려한 것입니다. \begin{align}\tag{식 2} B - \lambda I &= P^{-1}AP – \lambda P^{-1}P\\ &= P^{-1}(AP – \lambda P)\\ &= P^{-1}(A - \lambda I)P \end{align} 식 2의 행렬식은 식 3과 같이 정리됩니다. \begin{align} &\begin{aligned}\textsf{det}(B - \lambda I ) & = \textsf{det}(P^{-1}(AP – \lambda P))\\ &= \textsf{det}(P^{-1}) \textsf{det}((A – \lambda I)) \textsf{det}(P)\\ &= \textsf{det}(P^{-1}) \textsf{det}(P) \textsf{det}((A – \lambda I))\\ &= \textsf{det}(A – \lambda I)\end{aligned}\\ &\begin{aligned}\because \; \textsf{det}(P^{-1}) \textsf{det}(P) &= \textsf{det}(P^{-1}P)\\ &= \textsf{det}(I)\end{aligned}\end{align} 유사행렬의 특성 유사행렬인 두 정방행렬 A와 B는 'A ~ B' 와 같...

[sympy] Sympy객체의 표현을 위한 함수들

Sympy객체의 표현을 위한 함수들 General simplify(x): 식 x(sympy 객체)를 간단히 정리 합니다. import numpy as np from sympy import * x=symbols("x") a=sin(x)**2+cos(x)**2 a $\sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}$ simplify(a) 1 simplify(b) $\frac{x^{3} + x^{2} - x - 1}{x^{2} + 2 x + 1}$ simplify(b) x - 1 c=gamma(x)/gamma(x-2) c $\frac{\Gamma\left(x\right)}{\Gamma\left(x - 2\right)}$ simplify(c) $\displaystyle \left(x - 2\right) \left(x - 1\right)$ 위의 예들 중 객체 c의 감마함수(gamma(x))는 확률분포 등 여러 부분에서 사용되는 표현식으로 다음과 같이 정의 됩니다. 감마함수는 음이 아닌 정수를 제외한 모든 수에서 정의됩니다. 식 1과 같이 자연수에서 감마함수는 factorial(!), 부동소수(양의 실수)인 경우 적분을 적용하여 계산합니다. $$\tag{식 1}\Gamma(n) =\begin{cases}(n-1)!& n:\text{자연수}\\\int^\infty_0x^{n-1}e^{-x}\,dx& n:\text{부동소수}\end{cases}$$ x=symbols('x') gamma(x).subs(x,4) $\displaystyle 6$ factorial 계산은 math.factorial() 함수를 사용할 수 있습니다. import math math.factorial(3) 6 a=gamma(x).subs(x,4.5) a.evalf(3) 11.6 simpilfy() 함수의 알고리즘은 식에서 공통사항을 찾아 정리하...

유리함수 그래프와 점근선 그리기

내용 유리함수(Rational Function) 점근선(asymptote) 유리함수 그래프와 점근선 그리기 유리함수(Rational Function) 유리함수는 분수형태의 함수를 의미합니다. 예를들어 다음 함수는 분수형태의 유리함수입니다. $$f(x)=\frac{x^{2} - 1}{x^{2} + x - 6}$$ 분수의 경우 분모가 0인 경우 정의할 수 없습니다. 이와 마찬가지로 유리함수 f(x)의 정의역은 분모가 0이 아닌 부분이어야 합니다. 그러므로 위함수의 정의역은 분모가 0인 부분을 제외한 부분들로 구성됩니다. sympt=solve(denom(f), a); asympt [-3, 2] $$-\infty \lt x \lt -3, \quad -3 \lt x \lt 2, \quad 2 \lt x \lt \infty$$ 이 정의역을 고려해 그래프를 작성을 위한 사용자 정의함수는 다음과 같습니다. def validX(x, f, symbol): ① a=[] b=[] for i in x: try: b.append(float(f.subs(symbol, i))) a.append(i) except: pass return(a, b) #x는 임의로 지정한 정의역으로 불연속선점을 기준으로 구분된 몇개의 구간으로 전달할 수 있습니다. #그러므로 인수 x는 2차원이어야 합니다. def RationalPlot(x, f, sym, dp=100): fig, ax=plt.subplots(dpi=dp) # ② for k in x: #③ x4, y4=validX(k, f, sym) ax.plot(x4, y4) ax.spines['left'].set_position(('data', 0)) ax.spines['right...