기본 콘텐츠로 건너뛰기

pandas_ta를 적용한 통계적 인덱스 지표

리눅스의 파일 시스템

1. 파일시스템 

다음은 리눅스 계열에서 기본적인 파일시스템의 계통을 나타냅니다.

'/' :root directory of the entire file system hierarchy
  --> /bin/ : Enssential usser command binaries
  --> /boot/ : Static files of the boot loader
  --> /dev/ : Device Files
  --> /etc/: Host-specific system configuration (required dorectories : OPT, Xlt, SGML, XML)
  --> /home/ : User home directory
           --> /home/--/ -->
                                     --> ...
           --> /home/--/ --> ...
  --> /lib/ :Essential shared libraries and kernel moudles
  --> /media/ : Mount point for removable media
  --> /mnt/ : Mount point for a temporarily mounted filesystem
  --> /opt/ : add-on application software packages
  --> /sbin/ : system binaries
  --> /srv/ : Data for services produced by this system
  --> /tmp/ : tempory file
  --> /usr/ : (Multi-)user utilities and applications (Secodary hirearachy provied directories: BIN, INCLUDE,  LIB, LOCAL, SBIN, SHARE)
            --> /usr/local/  --> usr/local/bin
                                         --> /usr/local/games
  --> /var/: variable files
  --> /root/ : Home directory for the root user
  --> /proc/ : Virtual filesystem documenting kernel and process status as text file

2. pwd 

터미널에서 현재 디렉토리의 위치를 나타냅니다.
sgoing@sgoing-virtual-machine:~$ pwd
/home/sgoing


3. cd

change directoy,  즉 디렉토리를 변경하고자 할 때 사용합니다.
cd '이동할 디렉토리 경로'
sgoing@sgoing-virtual-machine:~/문서$ cd /home/sgoing/문서/script
인자 없이 cd 만을 입력하면 사용자의 home directory로 직접 이동
sgoing@sgoing-virtual-machine:~/문서/script$ cd
sgoing@sgoing-virtual-machine:~$ 


현재 디렉토리의 자손 디렉토리로 이동하기 위해서는 백슬래시 없이 디레토리 이름만을 사용합니다.
sgoing@sgoing-virtual-machine:~$ cd 문서
sgoing@sgoing-virtual-machine:~/문서$

위와 같이 모든 경로의 이름을 입력하는 것을 절대경로, 현재 디렉토리로 부터 상대적으로 이동하기 위해 간략한 경로를 표시하는 방법을 상대경로라고 합니다.

현재 작업하는 디렉토리의 직접적인 상위 디렉토리(부모 디렉토리)로 이동을 위해서는 "cd .." 를 사용합니다. 이 경우 역시 상대경로입니다. 즉, 현재의 디렉토리를 기준으로상대적인 부분으로 이동하는 방식 입니다.
sgoing@sgoing-virtual-machine:~/문서$ cd ..
sgoing@sgoing-virtual-machine:~$






댓글

이 블로그의 인기 게시물

[Linear Algebra] 유사변환(Similarity transformation)

유사변환(Similarity transformation) n×n 차원의 정방 행렬 A, B 그리고 가역 행렬 P 사이에 식 1의 관계가 성립하면 행렬 A와 B는 유사행렬(similarity matrix)이 되며 행렬 A를 가역행렬 P와 B로 분해하는 것을 유사 변환(similarity transformation) 이라고 합니다. $$\tag{1} A = PBP^{-1} \Leftrightarrow P^{-1}AP = B $$ 식 2는 식 1의 양변에 B의 고유값을 고려한 것입니다. \begin{align}\tag{식 2} B - \lambda I &= P^{-1}AP – \lambda P^{-1}P\\ &= P^{-1}(AP – \lambda P)\\ &= P^{-1}(A - \lambda I)P \end{align} 식 2의 행렬식은 식 3과 같이 정리됩니다. \begin{align} &\begin{aligned}\textsf{det}(B - \lambda I ) & = \textsf{det}(P^{-1}(AP – \lambda P))\\ &= \textsf{det}(P^{-1}) \textsf{det}((A – \lambda I)) \textsf{det}(P)\\ &= \textsf{det}(P^{-1}) \textsf{det}(P) \textsf{det}((A – \lambda I))\\ &= \textsf{det}(A – \lambda I)\end{aligned}\\ &\begin{aligned}\because \; \textsf{det}(P^{-1}) \textsf{det}(P) &= \textsf{det}(P^{-1}P)\\ &= \textsf{det}(I)\end{aligned}\end{align} 유사행렬의 특성 유사행렬인 두 정방행렬 A와 B는 'A ~ B' 와 같...

[sympy] Sympy객체의 표현을 위한 함수들

Sympy객체의 표현을 위한 함수들 General simplify(x): 식 x(sympy 객체)를 간단히 정리 합니다. import numpy as np from sympy import * x=symbols("x") a=sin(x)**2+cos(x)**2 a $\sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}$ simplify(a) 1 simplify(b) $\frac{x^{3} + x^{2} - x - 1}{x^{2} + 2 x + 1}$ simplify(b) x - 1 c=gamma(x)/gamma(x-2) c $\frac{\Gamma\left(x\right)}{\Gamma\left(x - 2\right)}$ simplify(c) $\displaystyle \left(x - 2\right) \left(x - 1\right)$ 위의 예들 중 객체 c의 감마함수(gamma(x))는 확률분포 등 여러 부분에서 사용되는 표현식으로 다음과 같이 정의 됩니다. 감마함수는 음이 아닌 정수를 제외한 모든 수에서 정의됩니다. 식 1과 같이 자연수에서 감마함수는 factorial(!), 부동소수(양의 실수)인 경우 적분을 적용하여 계산합니다. $$\tag{식 1}\Gamma(n) =\begin{cases}(n-1)!& n:\text{자연수}\\\int^\infty_0x^{n-1}e^{-x}\,dx& n:\text{부동소수}\end{cases}$$ x=symbols('x') gamma(x).subs(x,4) $\displaystyle 6$ factorial 계산은 math.factorial() 함수를 사용할 수 있습니다. import math math.factorial(3) 6 a=gamma(x).subs(x,4.5) a.evalf(3) 11.6 simpilfy() 함수의 알고리즘은 식에서 공통사항을 찾아 정리하...

유리함수 그래프와 점근선 그리기

내용 유리함수(Rational Function) 점근선(asymptote) 유리함수 그래프와 점근선 그리기 유리함수(Rational Function) 유리함수는 분수형태의 함수를 의미합니다. 예를들어 다음 함수는 분수형태의 유리함수입니다. $$f(x)=\frac{x^{2} - 1}{x^{2} + x - 6}$$ 분수의 경우 분모가 0인 경우 정의할 수 없습니다. 이와 마찬가지로 유리함수 f(x)의 정의역은 분모가 0이 아닌 부분이어야 합니다. 그러므로 위함수의 정의역은 분모가 0인 부분을 제외한 부분들로 구성됩니다. sympt=solve(denom(f), a); asympt [-3, 2] $$-\infty \lt x \lt -3, \quad -3 \lt x \lt 2, \quad 2 \lt x \lt \infty$$ 이 정의역을 고려해 그래프를 작성을 위한 사용자 정의함수는 다음과 같습니다. def validX(x, f, symbol): ① a=[] b=[] for i in x: try: b.append(float(f.subs(symbol, i))) a.append(i) except: pass return(a, b) #x는 임의로 지정한 정의역으로 불연속선점을 기준으로 구분된 몇개의 구간으로 전달할 수 있습니다. #그러므로 인수 x는 2차원이어야 합니다. def RationalPlot(x, f, sym, dp=100): fig, ax=plt.subplots(dpi=dp) # ② for k in x: #③ x4, y4=validX(k, f, sym) ax.plot(x4, y4) ax.spines['left'].set_position(('data', 0)) ax.spines['right...