기본 콘텐츠로 건너뛰기

pandas_ta를 적용한 통계적 인덱스 지표

[stock] Chop 지표

Chop

시장의 추세 또는 횡보 상태를 판단하는데 도움을 주는 지표로서 수치화한 결과를 나타냄

  • True Range (TR) 계산:
    • TR=max(High−Low,High−Closeprev,Low−Closeprev|)
    • 여기서 High는 당일 고가, Low는 당일 저가, Closeprev 는 전일 종가입니다.
  • 설정된 기간 (n) 동안의 True Range 값을 합산합니다.
    • $\text{ATR Sum}_n = \sum^n_{i=1}\text{TR}_i$
  • 설정된 기간 (n) 동안의 최고가(HH)와 최저가(LL)를 찾습니다.
  • 차프 지수 (CHOP) 계산:
    • $\text{CHOP}=100×\frac{ \log\left(\frac{\text{ATR Sum}_n}{\text{HH}_n - \text{LL}_n} \right) }{\log(n)}$
    • n은 차프 지수를 계산하는 기간입니다.

추세는 큰 변동성을 기반으로 합니다. 그러므로 고가와 저가의 차이가 크기 때문에 Chop값이 작아집니다. 반대로 횡보구간은 그 차이가 작기 때문에 큰 Chop를 보입니다. 이러한 경우는 추세추종 전략의 효율성이 저하될 수 있습니다.

Chop의 절대값보다는 과거값과의 비교 또는 특정기준선을 통해 시장상황을 판단합니다.

pandas_ta.chop(high, low, close, length=None, atr_length=None, ln=None, scalar=None, drift=None, offset=None, **kwargs)로 계산할 수 있습니다.

  • ATR sum을 계산하는 기간 length로 기본값은 14
  • ATR은 TR의 이동평균값으로 이 기간은 atr_length로 조정하며 기본값은 1입니다. 기본값의 경우 ATR 대신 TR을 사용하는 것입니다.
  • 위 식의 tr을 계산하는 과정에서 이전이 종가를 사용합니다. 이전의 기간을 drift로 조정하며 기본값은 1입니다.
  • ln= True일 경우 자연로그, False일 경우 대수로그(log10)를 사용하며 기본값은 False
import numpy as np
import pandas as pd
import yfinance as yf
import pandas_ta as ta
import matplotlib.pyplot as plt
import mplfinance as mpf

st=pd.Timestamp(2024,1, 1)
et=pd.Timestamp(2025, 5, 3)
trgnme="000660"
trg=fdr.DataReader(trgnme,  st, et)[["Open", "High", "Low", "Close", "Volume"]]


chop=trg.ta.chop(20)
chop.tail(3)
Date
2025-04-29    46.318631
2025-04-30    52.769038
2025-05-02    57.873517
Name: CHOP_20_1_100, dtype: float64
chop=trg.ta.chop()
adf=[mpf.make_addplot(trg.ta.ema(5), panel=0, color="brown", label="ema5"),
     mpf.make_addplot(trg.ta.ema(20), panel=0, color="navy", label="ema20"),
     mpf.make_addplot(chop, panel=1, color="brown", label="chop")]
f, axs=mpf.plot(trg, type="candle", style="yahoo", volume=False, addplot=adf, returnfig=True, figsize=(12, 6))
axs[0].legend(loc="upper left")
axs[2].legend(loc="upper left")
axs[2].axhline(61.8, color="orange", ls="dashed")
axs[2].axhline(38.2, color="orange", ls="dashed")
plt.show()

추세는 큰 변동성을 기반으로 합니다. 그러므로 고가와 저가의 차이가 크기 때문에 Chop값이 작아집니다. 반대로 횡보구간은 그 차이가 작기 때문에 큰 Chop를 보입니다. 이러한 경우는 추세추종 전략의 효율성이 저하될 수 있습니다.

Chop의 절대값보다는 과거값과의 비교 또는 특정기준선을 통해 시장상황을 판단합니다.

  • 높은 값 (일반적으로 61.8 이상): 횡보 또는 추세가 약한 구간으로 해석될 수 있음
  • 낮은 값 (일반적으로 38.2 이하): 강한 추세를 형성할 가능성이 있는 구간으로 해석될 수 있음
  • 중간 값: 명확한 추세나 횡보 상태를 나타내지 않음
  • 차프 지수는 시장의 방향을 예측하는 지표가 아니라, 현재 시장의 상태 (추세 vs. 횡보)를 판단하는 데 도움을 주는 지표이며 설정 기간 (n)에 따라 지표의 민감도가 달라질 수 있습니다.

댓글

이 블로그의 인기 게시물

[Linear Algebra] 유사변환(Similarity transformation)

유사변환(Similarity transformation) n×n 차원의 정방 행렬 A, B 그리고 가역 행렬 P 사이에 식 1의 관계가 성립하면 행렬 A와 B는 유사행렬(similarity matrix)이 되며 행렬 A를 가역행렬 P와 B로 분해하는 것을 유사 변환(similarity transformation) 이라고 합니다. $$\tag{1} A = PBP^{-1} \Leftrightarrow P^{-1}AP = B $$ 식 2는 식 1의 양변에 B의 고유값을 고려한 것입니다. \begin{align}\tag{식 2} B - \lambda I &= P^{-1}AP – \lambda P^{-1}P\\ &= P^{-1}(AP – \lambda P)\\ &= P^{-1}(A - \lambda I)P \end{align} 식 2의 행렬식은 식 3과 같이 정리됩니다. \begin{align} &\begin{aligned}\textsf{det}(B - \lambda I ) & = \textsf{det}(P^{-1}(AP – \lambda P))\\ &= \textsf{det}(P^{-1}) \textsf{det}((A – \lambda I)) \textsf{det}(P)\\ &= \textsf{det}(P^{-1}) \textsf{det}(P) \textsf{det}((A – \lambda I))\\ &= \textsf{det}(A – \lambda I)\end{aligned}\\ &\begin{aligned}\because \; \textsf{det}(P^{-1}) \textsf{det}(P) &= \textsf{det}(P^{-1}P)\\ &= \textsf{det}(I)\end{aligned}\end{align} 유사행렬의 특성 유사행렬인 두 정방행렬 A와 B는 'A ~ B' 와 같...

[sympy] Sympy객체의 표현을 위한 함수들

Sympy객체의 표현을 위한 함수들 General simplify(x): 식 x(sympy 객체)를 간단히 정리 합니다. import numpy as np from sympy import * x=symbols("x") a=sin(x)**2+cos(x)**2 a $\sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}$ simplify(a) 1 simplify(b) $\frac{x^{3} + x^{2} - x - 1}{x^{2} + 2 x + 1}$ simplify(b) x - 1 c=gamma(x)/gamma(x-2) c $\frac{\Gamma\left(x\right)}{\Gamma\left(x - 2\right)}$ simplify(c) $\displaystyle \left(x - 2\right) \left(x - 1\right)$ 위의 예들 중 객체 c의 감마함수(gamma(x))는 확률분포 등 여러 부분에서 사용되는 표현식으로 다음과 같이 정의 됩니다. 감마함수는 음이 아닌 정수를 제외한 모든 수에서 정의됩니다. 식 1과 같이 자연수에서 감마함수는 factorial(!), 부동소수(양의 실수)인 경우 적분을 적용하여 계산합니다. $$\tag{식 1}\Gamma(n) =\begin{cases}(n-1)!& n:\text{자연수}\\\int^\infty_0x^{n-1}e^{-x}\,dx& n:\text{부동소수}\end{cases}$$ x=symbols('x') gamma(x).subs(x,4) $\displaystyle 6$ factorial 계산은 math.factorial() 함수를 사용할 수 있습니다. import math math.factorial(3) 6 a=gamma(x).subs(x,4.5) a.evalf(3) 11.6 simpilfy() 함수의 알고리즘은 식에서 공통사항을 찾아 정리하...

유리함수 그래프와 점근선 그리기

내용 유리함수(Rational Function) 점근선(asymptote) 유리함수 그래프와 점근선 그리기 유리함수(Rational Function) 유리함수는 분수형태의 함수를 의미합니다. 예를들어 다음 함수는 분수형태의 유리함수입니다. $$f(x)=\frac{x^{2} - 1}{x^{2} + x - 6}$$ 분수의 경우 분모가 0인 경우 정의할 수 없습니다. 이와 마찬가지로 유리함수 f(x)의 정의역은 분모가 0이 아닌 부분이어야 합니다. 그러므로 위함수의 정의역은 분모가 0인 부분을 제외한 부분들로 구성됩니다. sympt=solve(denom(f), a); asympt [-3, 2] $$-\infty \lt x \lt -3, \quad -3 \lt x \lt 2, \quad 2 \lt x \lt \infty$$ 이 정의역을 고려해 그래프를 작성을 위한 사용자 정의함수는 다음과 같습니다. def validX(x, f, symbol): ① a=[] b=[] for i in x: try: b.append(float(f.subs(symbol, i))) a.append(i) except: pass return(a, b) #x는 임의로 지정한 정의역으로 불연속선점을 기준으로 구분된 몇개의 구간으로 전달할 수 있습니다. #그러므로 인수 x는 2차원이어야 합니다. def RationalPlot(x, f, sym, dp=100): fig, ax=plt.subplots(dpi=dp) # ② for k in x: #③ x4, y4=validX(k, f, sym) ax.plot(x4, y4) ax.spines['left'].set_position(('data', 0)) ax.spines['right...