기본 콘텐츠로 건너뛰기

[matplotlib]quiver()함수

[data analysis]베타분포(Beta distribution)

베타분포(Beta distribution)

베타분포는 두개의 양의 매개변수를 가지며 [0, 1] 구간에서 정의되는 연속확률 분포의 일종으로 비율, 확률, 백분율 등의 확률변수를 모델링하는데 사용되는 분포입니다.

베타분포의 PDF

$$\begin{align}& f(x; \alpha,\; \beta)=\frac{1}{B(\alpha, \,\beta)}x^{\alpha-1}(1-x)^{\beta-1}\\&0\le x \le 1,\; \alpha, \beta \ge 0\\ & B(\alpha,\, \beta): \text{beta function}\end{align} $$

베타함수는 확률밀도 함수의 전체 면적으로 1로 만들기 위한 정규화 상수입니다.

numpy.random.beta(a, b, size=None) 함수로 베타분포를 따르는 표본을 추출할 수 있습니다. 이 표본을 시각화하기 위해 다음 UDF를 작성하여 사용합니다.

import numpy as np
from scipy.stats import skew 
np.random.seed(3)
plt.figure(figsize=(5, 3))
arg=[(5,5), (5,2), (2,5)]
for i in arg:
    beta_Shape(i[0], i[1], size=100000)
    sam=np.random.beta(i[0], i[1], size=100000)
    print(f'beta({i[0]},{i[1]} )의 중앙값:{np.median(sam).round(5)}, 평균:{np.mean(sam).round(5)}, 왜도:{skew(sam).round(5)}')
plt.show()
np.random.seed(3)
plt.figure(figsize=(5, 3))
arg=[(5,5), (5,2), (2,5)]
for i in arg:
    beta_Shape(i[0], i[1], size=100000)
    sam=np.random.beta(i[0], i[1], size=100000)
    print(f'beta({i[0]},{i[1]} )의 중앙값:{np.median(sam).round(5)}, 평균:{np.mean(sam).round(5)}')
plt.show()
beta(5,5 )의 중앙값:0.49992, 평균:0.49959, 왜도:0.00144
beta(5,2 )의 중앙값:0.73664, 평균:0.71478, 왜도:-0.59299
beta(2,5 )의 중앙값:0.26613, 평균:0.287, 왜도:0.59411
  • beta(5,5): 정규분포와 같이 좌우 대칭 분포를 보입니다.
  • beta(5,2): 왼쪽으로 치우친 분포, 중앙값 > 평균으로 skew < 0
  • beta(2,5): 오른쪽으로 치우친 분포, 중앙값 < 평균으로 skew > 0

위 결과와 같이 베타분포는 α와 β의 값에 따라 모양의 변화가 일어납니다.

  • α=1,β=1: 균등 분포(Uniform distribution)와 동일한 형태를 가집니다.
  • α>1,β>1: 종 모양과 유사한 분포를 가지며, α와 β 값이 클수록 평균 주변에 더 집중된 형태를 보입니다.
  • α<1,β<1: U자 모양의 분포를 가집니다.
  • α>β: 분포가 오른쪽으로 치우쳐집니다 (양의 왜도).
  • α<β: 분포가 왼쪽으로 치우쳐집니다 (음의 왜도).
  • α=β: 분포가 대칭적인 형태를 가집니다.

댓글

이 블로그의 인기 게시물

[Linear Algebra] 유사변환(Similarity transformation)

유사변환(Similarity transformation) n×n 차원의 정방 행렬 A, B 그리고 가역 행렬 P 사이에 식 1의 관계가 성립하면 행렬 A와 B는 유사행렬(similarity matrix)이 되며 행렬 A를 가역행렬 P와 B로 분해하는 것을 유사 변환(similarity transformation) 이라고 합니다. $$\tag{1} A = PBP^{-1} \Leftrightarrow P^{-1}AP = B $$ 식 2는 식 1의 양변에 B의 고유값을 고려한 것입니다. \begin{align}\tag{식 2} B - \lambda I &= P^{-1}AP – \lambda P^{-1}P\\ &= P^{-1}(AP – \lambda P)\\ &= P^{-1}(A - \lambda I)P \end{align} 식 2의 행렬식은 식 3과 같이 정리됩니다. \begin{align} &\begin{aligned}\textsf{det}(B - \lambda I ) & = \textsf{det}(P^{-1}(AP – \lambda P))\\ &= \textsf{det}(P^{-1}) \textsf{det}((A – \lambda I)) \textsf{det}(P)\\ &= \textsf{det}(P^{-1}) \textsf{det}(P) \textsf{det}((A – \lambda I))\\ &= \textsf{det}(A – \lambda I)\end{aligned}\\ &\begin{aligned}\because \; \textsf{det}(P^{-1}) \textsf{det}(P) &= \textsf{det}(P^{-1}P)\\ &= \textsf{det}(I)\end{aligned}\end{align} 유사행렬의 특성 유사행렬인 두 정방행렬 A와 B는 'A ~ B' 와 같...

[sympy] Sympy객체의 표현을 위한 함수들

Sympy객체의 표현을 위한 함수들 General simplify(x): 식 x(sympy 객체)를 간단히 정리 합니다. import numpy as np from sympy import * x=symbols("x") a=sin(x)**2+cos(x)**2 a $\sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}$ simplify(a) 1 simplify(b) $\frac{x^{3} + x^{2} - x - 1}{x^{2} + 2 x + 1}$ simplify(b) x - 1 c=gamma(x)/gamma(x-2) c $\frac{\Gamma\left(x\right)}{\Gamma\left(x - 2\right)}$ simplify(c) $\displaystyle \left(x - 2\right) \left(x - 1\right)$ 위의 예들 중 객체 c의 감마함수(gamma(x))는 확률분포 등 여러 부분에서 사용되는 표현식으로 다음과 같이 정의 됩니다. 감마함수는 음이 아닌 정수를 제외한 모든 수에서 정의됩니다. 식 1과 같이 자연수에서 감마함수는 factorial(!), 부동소수(양의 실수)인 경우 적분을 적용하여 계산합니다. $$\tag{식 1}\Gamma(n) =\begin{cases}(n-1)!& n:\text{자연수}\\\int^\infty_0x^{n-1}e^{-x}\,dx& n:\text{부동소수}\end{cases}$$ x=symbols('x') gamma(x).subs(x,4) $\displaystyle 6$ factorial 계산은 math.factorial() 함수를 사용할 수 있습니다. import math math.factorial(3) 6 a=gamma(x).subs(x,4.5) a.evalf(3) 11.6 simpilfy() 함수의 알고리즘은 식에서 공통사항을 찾아 정리하...

sympy.solvers로 방정식해 구하기

sympy.solvers로 방정식해 구하기 대수 방정식을 해를 계산하기 위해 다음 함수를 사용합니다. sympy.solvers.solve(f, *symbols, **flags) f=0, 즉 동차방정식에 대해 지정한 변수의 해를 계산 f : 식 또는 함수 symbols: 식의 해를 계산하기 위한 변수, 변수가 하나인 경우는 생략가능(자동으로 인식) flags: 계산 또는 결과의 방식을 지정하기 위한 인수들 dict=True: {x:3, y:1}같이 사전형식, 기본값 = False set=True :{(x,3),(y,1)}같이 집합형식, 기본값 = False ratioal=True : 실수를 유리수로 반환, 기본값 = False positive=True: 해들 중에 양수만을 반환, 기본값 = False 예 $x^2=1$의 해를 결정합니다. solve() 함수에 적용하기 위해서는 다음과 같이 식의 한쪽이 0이 되는 형태인 동차식으로 구성되어야 합니다. $$x^2-1=0$$ import numpy as np from sympy import * x = symbols('x') solve(x**2-1, x) [-1, 1] 위 식은 계산 과정은 다음과 같습니다. $$\begin{aligned}x^2-1=0 \rightarrow (x+1)(x-1)=0 \\ x=1 \; \text{or}\; -1\end{aligned}$$ 예 $x^4=1$의 해를 결정합니다. solve() 함수의 인수 set=True를 지정하였으므로 결과는 집합(set)형으로 반환됩니다. eq=x**4-1 solve(eq, set=True) ([x], {(-1,), (-I,), (1,), (I,)}) 위의 경우 I는 복소수입니다.즉 위 결과의 과정은 다음과 같습니다. $$x^4-1=(x^2+1)(x+1)(x-1)=0 \rightarrow x=\pm \sqrt{-1}, \; \pm 1=\pm i,\; \pm1$$ 실수...