기본 콘텐츠로 건너뛰기

[matplotlib]quiver()함수

[stock] pandas_ta와 TA-Lib 라이브러리에서 제공하는 기술적 지표

pandas_ta와 TA-Lib 라이브러리에서 제공하는 기술적 지표

pandas_ta

pandas_ta 함수
함수full name
A
apo Absolute Price Oscillator (APO)
accbands Acceleration Bands (ACCBANDS)
ad Accumulation/Distribution (AD)
alma Arnaud Legoux Moving Average (ALMA)
aroon Aroon & Aroon Oscillator (AROON)
adx Average Directional Movement (ADX)
atr Average True Range (ATR) 변동성 지표
ao Awesome Oscillator (AO)
B
bop Balance of Power (BOP)
bias Bias (BIAS)
bton Binary to number
bbands Bollinger Bands (BBANDS), 변동성 지표
brar BRAR (BRAR)
C
cg Center of Gravity (CG)
cmf Chaikin Money Flow (CMF)
cfo Chande Forcast Oscillator (CFO)
cksp Chande Kroll Stop (CKSP)
cmo Chande Momentum Oscillator (CMO)
chop Choppiness Index (CHOP)
xex Condition any
cci Commodity Channel Index (CCI)
xev Condition all
counter Condition counter
xfl Condition filter
coppock Coppock Curve (COPC)
cti Correlation Trend Indicator (CTI)
D
dpo Detrend Price Oscillator (DPO)
dm Directional Movement Index(DMI)
donchian Donchian Channels (DC)
dema Double Exponential Moving Average (DEMA)
dvdi Dual Volume Divergence Index (DVDI)
xhh Dynamic rolling highest values
xll Dynamic rolling lowest values
xrf Dynamic shifted values
E
ecm Ease of Movement (EOM)
er Efficiency Ratio (ER)
ssf Ehler's Super Smoother Filter (SSF) © 2013
efi Elder's Force Index (EFI)
eri Elder Ray Index (ERI)
thermo Elders Thermometer (THERMO)
entropy Entropy (ENTP)
ebsw Even Better SineWave (EBSW)
ema Exponential Moving Average (EMA)
F
fwma Fibonacci's Weighted Moving Average (FWMA)
fisher Fisher Transform (FISHT)
G
hilo Gann HiLo Activator(HiLo)
H
hma Hull Moving Average (HMA)
hwma HWMA (Holt-Winter Moving Average)
I
ichimoku Ichimoku Kinkō Hyō (ichimoku)
inertia Inertia (INERTIA)
J
jma Jurik Moving Average Average (JMA)
K
kama Kaufman's Adaptive Moving Average (KAMA)
kdj KDJ (KDJ)
kc Keltner Channels (KC) 변동성 지표
kvo Klinger Volume Oscillator (KVO)
kst 'Know Sure Thing' (KST)
L
linreg Linear Regression Moving Average (linreg)
long_run Long Run
M
massi Mass Index (MASSI)
mgcd McGinley Dynamic Indicator
mom Momentum (MOM)
mfi Money Flow Index (MFI)
macd Moving Average Convergence Divergence (MACD)
N
nvi Negative Volume Index (NVI)
natr Normalized Average True Range (NATR)
O
obv On Balance Volume (OBV)
P
psar Parabolic Stop and Reverse (psar)
ppo Percentage Price Oscillator (PPO)
pvo Percentage Volume Oscillator (PVO)
pvi Positive Volume Index (PVI)
pgo Pretty Good Oscillator (PGO)
pdist Price Distance (PDIST)
pvt Price-Volume Trend (PVT)
psl Psychological Line (PSL)
Q
qqe Quantitative Qualitative Estimation (QQE)
R
roc Rate of Change (ROC)
rsi Relative Strength Index (RSI)
rsx Relative Strength Xtra (rsx)
rvgi Relative Vigor Index (RVGI)
rvi Relative Volatility Index (RVI)
kurtosis Rolling Kurtosis
skew Rolling Skew
stdevRolling Standard Deviation
zscore Rolling Z Score
S
stc Schaff Trend Cycle (STC)
short_run Short Run
sinwma Sine Weighted Moving Average (SWMA)
slope Slope
smi SMI Ergodic Indicator (SMI)
sqz* Squeeze (SQZ) * NOTE: code sufferred from very strange error, code was commented.
sqz_pro Squeeze PRO(SQZPRO)
stdev standard deviation 변동성 지수
stoch Stochastic (STOCH)
stochrsi Stochastic RSI (STOCH RSI)
supertrend Supertrend (supertrend)
swma Symmetric Weighted Moving Average (SWMA)
T
t3 Tim Tillson's T3 Moving Average (T3)
trima Triangular Moving Average (TRIMA)
tema Triple Exponential Moving Average (TEMA)
trix Trix (TRIX)
tsi True Strength Index (TSI)
U
ui Ulcer Index (UI)
uo Ultimate Oscillator (UO)
V
vidya Variable Index Dynamic Average (VIDYA)
vhf Vertical Horizontal Filter (VHF)
vwap Volume Weighted Average Price (VWAP)
vwma Volume Weighted Moving Average (VWMA)
vortex Vortex
W
wcp Weighted Closing Price (WCP)
wma Weighted Moving Average (WMA)
rma wildeR's Moving Average (RMA)
willr William's Percent R (WILLR)
X
xsa X simple moving average
Z
zlma Zero Lag Moving Average (ZLMA)
aber=ta.aberration(high=df["High"], low=df["Low"], close=df["Close"])
aber.tail(2).round(2)
ABER_ZG_5_15 ABER_SG_5_15 ABER_XG_5_15 ABER_ATR_5_15
Datetime
2024-02-02 12:00:00+09:00 133826.67 135169.43 132483.91 1342.76
2024-02-02 13:00:00+09:00 134180.00 135459.90 132900.10 1279.90

TA-Lib

Overlap studies

BBANDS Bollinger Bands
DEMA Double Exponential Moving Average
EMA Exponential Moving Average
HT_TRENDLINE Hilbert Transform - Instantaneous Trendline
KAMA Kaufman Adaptive Moving Average
MA Moving average
MAMA MESA Adaptive Moving Average
MAVP Moving average with variable period
MIDPOINT MidPoint over period
MIDPRICE Midpoint Price over period
SAR Parabolic SAR
SAREXT Parabolic SAR - Extended
SMA Simple Moving Average
T3 Triple Exponential Moving Average (T3)
TEMA Triple Exponential Moving Average
TRIMA Triangular Moving Average
WMA Weighted Moving Average

Momentum indicators

ADX Average Directional Movement Index
ADXR Average Directional Movement Index Rating
APO Absolute Price Oscillator
AROON Aroon
AROONOSC Aroon Oscillator
BOP Balance Of Power
CCI Commodity Channel Index
CMO Chande Momentum Oscillator
DX Directional Movement Index
MACD Moving Average Convergence/Divergence
MACDEXT MACD with controllable MA type
MACDFIX Moving Average Convergence/Divergence Fix 12/26
MFI Money Flow Index
MINUS_DI Minus Directional Indicator
MINUS_DM Minus Directional Movement
MOM Momentum
PLUS_DI Plus Directional Indicator
PLUS_DM Plus Directional Movement
PPO Percentage Price Oscillator
ROC Rate of change : ((price/prevPrice)-1)*100
ROCP Rate of change Percentage: (price-prevPrice)/prevPrice
ROCR Rate of change ratio: (price/prevPrice)
ROCR100 Rate of change ratio 100 scale: (price/prevPrice)*100
RSI Relative Strength Index
STOCH Stochastic
STOCHF Stochastic Fast
STOCHRSI Stochastic Relative Strength Index
TRIX 1-day Rate-Of-Change (ROC) of a Triple Smooth EMA
ULTOSC Ultimate Oscillator
WILLR Williams' %R

Volume indicators

AD Chaikin A/D Line
ADOSC Chaikin A/D Oscillator
OBV On Balance Volume

Cycle indicators

HT_DCPERIOD Hilbert Transform - Dominant Cycle Period
HT_DCPHASE Hilbert Transform - Dominant Cycle Phase
HT_PHASOR Hilbert Transform - Phasor Components
HT_SINE Hilbert Transform - SineWave
HT_TRENDMODE Hilbert Transform - Trend vs Cycle Mode

Price Tranform

AVGPRICE Average Price
MEDPRICE Median Price
TYPPRICE Typical Price
WCLPRICE Weighted Close Price

Pattern Recognition

CDL2CROWS Two Crows
CDL3BLACKCROWS Three Black Crows
CDL3INSIDE Three Inside Up/Down
CDL3LINESTRIKE Three-Line Strike
CDL3OUTSIDE Three Outside Up/Down
CDL3STARSINSOUTH Three Stars In The South
CDL3WHITESOLDIERS Three Advancing White Soldiers
CDLABANDONEDBABY Abandoned Baby
CDLADVANCEBLOCK Advance Block
CDLBELTHOLD Belt-hold
CDLBREAKAWAY Breakaway
CDLCLOSINGMARUBOZU Closing Marubozu
CDLCONCEALBABYSWALL Concealing Baby Swallow
CDLCOUNTERATTACK Counterattack
CDLDARKCLOUDCOVER Dark Cloud Cover
CDLDOJI Doji
CDLDOJISTAR Doji Star
CDLDRAGONFLYDOJI Dragonfly Doji
CDLENGULFING Engulfing Pattern
CDLEVENINGDOJISTAR Evening Doji Star
CDLEVENINGSTAR Evening Star
CDLGAPSIDESIDEWHITE Up/Down-gap side-by-side white lines
CDLGRAVESTONEDOJI Gravestone Doji
CDLHAMMER Hammer
CDLHANGINGMAN Hanging Man
CDLHARAMI Harami Pattern
CDLHARAMICROSS Harami Cross Pattern
CDLHIGHWAVE High-Wave Candle
CDLHIKKAKE Hikkake Pattern
CDLHIKKAKEMOD Modified Hikkake Pattern
CDLHOMINGPIGEON Homing Pigeon
CDLIDENTICAL3CROWS Identical Three Crows
CDLINNECK In-Neck Pattern
CDLINVERTEDHAMMER Inverted Hammer
CDLKICKING Kicking
CDLKICKINGBYLENGTH Kicking - bull/bear determined by the longer marubozu
CDLLADDERBOTTOM Ladder Bottom
CDLLONGLEGGEDDOJI Long Legged Doji
CDLLONGLINE Long Line Candle
CDLMARUBOZU Marubozu
CDLMATCHINGLOW Matching Low
CDLMATHOLD Mat Hold
CDLMORNINGDOJISTAR Morning Doji Star
CDLMORNINGSTAR Morning Star
CDLONNECK On-Neck Pattern
CDLPIERCING Piercing Pattern
CDLRICKSHAWMAN Rickshaw Man
CDLRISEFALL3METHODS Rising/Falling Three Methods
CDLSEPARATINGLINES Separating Lines
CDLSHOOTINGSTAR Shooting Star
CDLSHORTLINE Short Line Candle
CDLSPINNINGTOP Spinning Top
CDLSTALLEDPATTERN Stalled Pattern
CDLSTICKSANDWICH Stick Sandwich
CDLTAKURI Takuri (Dragonfly Doji with very long lower shadow)
CDLTASUKIGAP Tasuki Gap
CDLTHRUSTING Thrusting Pattern
CDLTRISTAR Tristar Pattern
CDLUNIQUE3RIVER Unique 3 River
CDLUPSIDEGAP2CROWS Upside Gap Two Crows
CDLXSIDEGAP3METHODS Upside/Downside Gap Three Methods

Statistic Functions

BETA Beta
CORREL Pearson's Correlation Coefficient (r)
LINEARREG Linear Regression
LINEARREG_ANGLE Linear Regression Angle
LINEARREG_INTERCEPT Linear Regression Intercept
LINEARREG_SLOPE Linear Regression Slope
STDDEV Standard Deviation
TSF Time Series Forecast
VAR Variance

댓글

이 블로그의 인기 게시물

[Linear Algebra] 유사변환(Similarity transformation)

유사변환(Similarity transformation) n×n 차원의 정방 행렬 A, B 그리고 가역 행렬 P 사이에 식 1의 관계가 성립하면 행렬 A와 B는 유사행렬(similarity matrix)이 되며 행렬 A를 가역행렬 P와 B로 분해하는 것을 유사 변환(similarity transformation) 이라고 합니다. $$\tag{1} A = PBP^{-1} \Leftrightarrow P^{-1}AP = B $$ 식 2는 식 1의 양변에 B의 고유값을 고려한 것입니다. \begin{align}\tag{식 2} B - \lambda I &= P^{-1}AP – \lambda P^{-1}P\\ &= P^{-1}(AP – \lambda P)\\ &= P^{-1}(A - \lambda I)P \end{align} 식 2의 행렬식은 식 3과 같이 정리됩니다. \begin{align} &\begin{aligned}\textsf{det}(B - \lambda I ) & = \textsf{det}(P^{-1}(AP – \lambda P))\\ &= \textsf{det}(P^{-1}) \textsf{det}((A – \lambda I)) \textsf{det}(P)\\ &= \textsf{det}(P^{-1}) \textsf{det}(P) \textsf{det}((A – \lambda I))\\ &= \textsf{det}(A – \lambda I)\end{aligned}\\ &\begin{aligned}\because \; \textsf{det}(P^{-1}) \textsf{det}(P) &= \textsf{det}(P^{-1}P)\\ &= \textsf{det}(I)\end{aligned}\end{align} 유사행렬의 특성 유사행렬인 두 정방행렬 A와 B는 'A ~ B' 와 같...

[sympy] Sympy객체의 표현을 위한 함수들

Sympy객체의 표현을 위한 함수들 General simplify(x): 식 x(sympy 객체)를 간단히 정리 합니다. import numpy as np from sympy import * x=symbols("x") a=sin(x)**2+cos(x)**2 a $\sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}$ simplify(a) 1 simplify(b) $\frac{x^{3} + x^{2} - x - 1}{x^{2} + 2 x + 1}$ simplify(b) x - 1 c=gamma(x)/gamma(x-2) c $\frac{\Gamma\left(x\right)}{\Gamma\left(x - 2\right)}$ simplify(c) $\displaystyle \left(x - 2\right) \left(x - 1\right)$ 위의 예들 중 객체 c의 감마함수(gamma(x))는 확률분포 등 여러 부분에서 사용되는 표현식으로 다음과 같이 정의 됩니다. 감마함수는 음이 아닌 정수를 제외한 모든 수에서 정의됩니다. 식 1과 같이 자연수에서 감마함수는 factorial(!), 부동소수(양의 실수)인 경우 적분을 적용하여 계산합니다. $$\tag{식 1}\Gamma(n) =\begin{cases}(n-1)!& n:\text{자연수}\\\int^\infty_0x^{n-1}e^{-x}\,dx& n:\text{부동소수}\end{cases}$$ x=symbols('x') gamma(x).subs(x,4) $\displaystyle 6$ factorial 계산은 math.factorial() 함수를 사용할 수 있습니다. import math math.factorial(3) 6 a=gamma(x).subs(x,4.5) a.evalf(3) 11.6 simpilfy() 함수의 알고리즘은 식에서 공통사항을 찾아 정리하...

sympy.solvers로 방정식해 구하기

sympy.solvers로 방정식해 구하기 대수 방정식을 해를 계산하기 위해 다음 함수를 사용합니다. sympy.solvers.solve(f, *symbols, **flags) f=0, 즉 동차방정식에 대해 지정한 변수의 해를 계산 f : 식 또는 함수 symbols: 식의 해를 계산하기 위한 변수, 변수가 하나인 경우는 생략가능(자동으로 인식) flags: 계산 또는 결과의 방식을 지정하기 위한 인수들 dict=True: {x:3, y:1}같이 사전형식, 기본값 = False set=True :{(x,3),(y,1)}같이 집합형식, 기본값 = False ratioal=True : 실수를 유리수로 반환, 기본값 = False positive=True: 해들 중에 양수만을 반환, 기본값 = False 예 $x^2=1$의 해를 결정합니다. solve() 함수에 적용하기 위해서는 다음과 같이 식의 한쪽이 0이 되는 형태인 동차식으로 구성되어야 합니다. $$x^2-1=0$$ import numpy as np from sympy import * x = symbols('x') solve(x**2-1, x) [-1, 1] 위 식은 계산 과정은 다음과 같습니다. $$\begin{aligned}x^2-1=0 \rightarrow (x+1)(x-1)=0 \\ x=1 \; \text{or}\; -1\end{aligned}$$ 예 $x^4=1$의 해를 결정합니다. solve() 함수의 인수 set=True를 지정하였으므로 결과는 집합(set)형으로 반환됩니다. eq=x**4-1 solve(eq, set=True) ([x], {(-1,), (-I,), (1,), (I,)}) 위의 경우 I는 복소수입니다.즉 위 결과의 과정은 다음과 같습니다. $$x^4-1=(x^2+1)(x+1)(x-1)=0 \rightarrow x=\pm \sqrt{-1}, \; \pm 1=\pm i,\; \pm1$$ 실수...