기본 콘텐츠로 건너뛰기

벡터와 행렬에 관련된 그림들

Variance

Variance

As introduced in descriptive statistics, **variance** represents data variability and is calculated as Equation 1, and the square root of the variance becomes the standard deviation (σ).

$$\begin{equation}\tag{1} \begin{aligned}\sigma^2&=E(X-\mu)^2\\&=(x_1-\mu)^2P(X=x_1)+ \cdots+(x_k-\mu)^2P(X=x_k)\\&=\sum^k_{i=1} (x_k-\mu)^2P(X=x_k) \end{aligned} \end{equation}$$

Variance, a measure of the spread of a data distribution, is the weighted average of the squared deviations between each data and the mean. Equation 1 is simplified to:

$$\begin{aligned}&\begin{aligned}\sigma^2&=\sum (x-\mu)^2P(X=x)\\&=\sum(x^2-2x\mu+\mu^2)f(x)\\&=\sum x^2f(x) -2\mu \sum xf(x)+ \mu^2\\&=\sum x^2f(x)-\mu^2\\&=E(X^2)-(E(X))^2 \end{aligned}\\ & \because \sum xf(x)=\mu \end{aligned}$$

As in the above expression, the calculation of variance consists of the expected value of the square of the variable and the square of the mean. The expected value of that variable squared is called the second moment. In other words, the expected value according to the degree of a variable is expressed as a moment for that degree. Therefore, the variance is calculated as the difference between the square of the second moment and the first moment, and since they are all expected values, a linear combination as in Equation 2 is established.

$$\begin{equation}\tag{2} \begin{aligned} Var(aX+b)&=\sigma^2_{ax+b}\\&=E[((aX+b)-\mu_{aX+b})^2]\\ &=E[((aX+b)-E(aX+b))^2]\\&=E[((aX+b)-aE(X)+b)^2]\\&=E[(a(X-\mu))^2]\\&=a^2E[(x-\mu)^2]\\&=a^2\sigma^2_X \end{aligned} \end{equation}$$

A constant added to a variable as in Equation 2 does not affect the variance of that variable.

Example 1)
  The probability mass function of the random variable X is: $$f(x)=\frac{x}{8}, \quad x=1,2,5$$. Determine E(X) and Var(X).

import numpy as np
import pandas as pd
from sympy import * 
import matplotlib.pyplot as plt
x=np.array([1,2,5])
f=x/8
f
array([0.125, 0.25 , 0.625])
Ex=np.sum(x*f)
Ex
3.75
Var=np.sum(x**2*f)-Ex**2
Var
2.6875

Example 2)
 The probability density function of a continuous random variable X is: $$f(x)=\frac{x+1}{8}, \quad 2 < x < 4$$ Determine E(X) and Var(X).

The mean and variance are calculated using the integral of the PDF function. The integral operation applies the itegrate() function of the sympy module.

x=symbols("x")
f=(x+1)/8
Ex=integrate(x*f, (x, 2, 4))
Ex
$\displaystyle \frac{37}{12}$
Var=integrate(x**2*f,(x, 2, 4))-Ex**2
Var
$\displaystyle \frac{47}{144}$

Example 3)
 Calculate the variance of a random variable X with the probability density function

$$f(x)=\begin{cases} 1-|x|& \quad |x|<1\\0& \quad \text{otherwise} \end{cases}$$
x=symbols("x")
f=1-abs(x)
Ex=integrate(x*f, (x, -1,1))
Ex
$\displaystyle 0$
Var=integrate(x**2*f,(x, -1,1))-Ex**2
Var
$\displaystyle \frac{1}{6}$

Example 4)
  Two types of games are played based on the rule that one die is rolled and points are scored according to the eye.

Point 1 2 3 4 5 6
Game 1(x) 1 2 3 4 5 6
Game 2(y) 3 0 6 0 0 12
P(X or Y) $\displaystyle \frac{1}{6}$ $\displaystyle \frac{1}{6}$ $\displaystyle \frac{1}{6}$ $\displaystyle \frac{1}{6}$ $\displaystyle \frac{1}{6}$ $\displaystyle \frac{1}{6}$

Determine the expected value and variance for each game.

game=pd.DataFrame([np.arange(1, 7), np.arange(1, 7),[3,0,6,0,0,12],
                   np.repeat(Rational(1,6), 6)],
                  index=["Dice Eye","game1(x)", "game2(Y)", "P(X or Y)"])
X=game.iloc[1,:]
Y=game.iloc[2,:]
EX=(X*game.iloc[3,:]).sum()
EX
$\displaystyle \frac{7}{2}$
VarX=(X**2*game.iloc[3,:]).sum()-EX**2
VarX
$\displaystyle \frac{35}{12}$
#game2
EY=(Y*game.iloc[3,:]).sum()
EY
$\displaystyle \frac{7}{2}$
VarY=(Y**2*game.iloc[3,:]).sum()-EY**2
VarY
$\displaystyle \frac{77}{4}$

Combine the two dice games in this example to create a new random variable Z and calculate the mean and variance of the probability distribution.

Z=X+Y
X=game.iloc[1,:]
Y=game.iloc[2,:]
Z=X+Y
Z
0 4
1 2
2 9
3 4
4 5
5 18
dtype: object
EZ=np.sum(Z*game.iloc[3,:])
EZ
$\displaystyle 7$
EX+EY
$\displaystyle 7$

As shown in the above result, the expected value of the combined variable is equal to the sum of each expected value. However, the variance of the combined variables is not equal to the sum of the variances of each variable. The variance can be calculated by DataFrame ``object.var()``.

VarZ=np.sum(Z**2*game.iloc[3,:])-EZ**2
VarZ
$\displaystyle \frac{86}{3}$
np.var(Z)
28.666666666666668
VarX+VarY
$\displaystyle \frac{133}{6}$

As the above results show, the variance of the combined variables and the sum of the variances of each variable do not match. This difference can be explained by the process of inducing the variance of the binding variable as shown in Equation 3.

$$\begin{equation}\tag{3} \begin{aligned} &Var[aX+bY]\\&=E[((aX+bY)-(a\mu_X+b\mu_Y)^2)]\\&=E[(a(X-\mu_X)+b(Y-\mu_Y))^2)]\\ &=E[a^2(X-\mu_X)^2+2ab(X-\mu_X)(Y-\mu_Y)+b^2(Y-\mu_Y)] \\ &=a^2E[(X-\mu_X)^2]+2abE[(X-\mu_X)(Y-\mu_Y)]+b^2E[(Y-\mu_Y)] \\ &=a^2Var(X)+b^2Var(Y)\\ & \because \; E[(X-\mu_x)(Y-\mu_Y)]=0 \end{aligned} \end{equation}$$

In Equation 3, E[(X-μx)(Y-μY)] denotes the interaction of two variables. If the two variables are independent, the value of that interaction is zero. Therefore, the difference in variance between the variables X and Y in the example and the associated variable Z provides information that the two variables are not independent.

댓글

이 블로그의 인기 게시물

[Linear Algebra] 유사변환(Similarity transformation)

유사변환(Similarity transformation) n×n 차원의 정방 행렬 A, B 그리고 가역 행렬 P 사이에 식 1의 관계가 성립하면 행렬 A와 B는 유사행렬(similarity matrix)이 되며 행렬 A를 가역행렬 P와 B로 분해하는 것을 유사 변환(similarity transformation) 이라고 합니다. $$\tag{1} A = PBP^{-1} \Leftrightarrow P^{-1}AP = B $$ 식 2는 식 1의 양변에 B의 고유값을 고려한 것입니다. \begin{align}\tag{식 2} B - \lambda I &= P^{-1}AP – \lambda P^{-1}P\\ &= P^{-1}(AP – \lambda P)\\ &= P^{-1}(A - \lambda I)P \end{align} 식 2의 행렬식은 식 3과 같이 정리됩니다. \begin{align} &\begin{aligned}\textsf{det}(B - \lambda I ) & = \textsf{det}(P^{-1}(AP – \lambda P))\\ &= \textsf{det}(P^{-1}) \textsf{det}((A – \lambda I)) \textsf{det}(P)\\ &= \textsf{det}(P^{-1}) \textsf{det}(P) \textsf{det}((A – \lambda I))\\ &= \textsf{det}(A – \lambda I)\end{aligned}\\ &\begin{aligned}\because \; \textsf{det}(P^{-1}) \textsf{det}(P) &= \textsf{det}(P^{-1}P)\\ &= \textsf{det}(I)\end{aligned}\end{align} 유사행렬의 특성 유사행렬인 두 정방행렬 A와 B는 'A ~ B' 와 같...

[sympy] Sympy객체의 표현을 위한 함수들

Sympy객체의 표현을 위한 함수들 General simplify(x): 식 x(sympy 객체)를 간단히 정리 합니다. import numpy as np from sympy import * x=symbols("x") a=sin(x)**2+cos(x)**2 a $\sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}$ simplify(a) 1 simplify(b) $\frac{x^{3} + x^{2} - x - 1}{x^{2} + 2 x + 1}$ simplify(b) x - 1 c=gamma(x)/gamma(x-2) c $\frac{\Gamma\left(x\right)}{\Gamma\left(x - 2\right)}$ simplify(c) $\displaystyle \left(x - 2\right) \left(x - 1\right)$ 위의 예들 중 객체 c의 감마함수(gamma(x))는 확률분포 등 여러 부분에서 사용되는 표현식으로 다음과 같이 정의 됩니다. 감마함수는 음이 아닌 정수를 제외한 모든 수에서 정의됩니다. 식 1과 같이 자연수에서 감마함수는 factorial(!), 부동소수(양의 실수)인 경우 적분을 적용하여 계산합니다. $$\tag{식 1}\Gamma(n) =\begin{cases}(n-1)!& n:\text{자연수}\\\int^\infty_0x^{n-1}e^{-x}\,dx& n:\text{부동소수}\end{cases}$$ x=symbols('x') gamma(x).subs(x,4) $\displaystyle 6$ factorial 계산은 math.factorial() 함수를 사용할 수 있습니다. import math math.factorial(3) 6 a=gamma(x).subs(x,4.5) a.evalf(3) 11.6 simpilfy() 함수의 알고리즘은 식에서 공통사항을 찾아 정리하...

sympy.solvers로 방정식해 구하기

sympy.solvers로 방정식해 구하기 대수 방정식을 해를 계산하기 위해 다음 함수를 사용합니다. sympy.solvers.solve(f, *symbols, **flags) f=0, 즉 동차방정식에 대해 지정한 변수의 해를 계산 f : 식 또는 함수 symbols: 식의 해를 계산하기 위한 변수, 변수가 하나인 경우는 생략가능(자동으로 인식) flags: 계산 또는 결과의 방식을 지정하기 위한 인수들 dict=True: {x:3, y:1}같이 사전형식, 기본값 = False set=True :{(x,3),(y,1)}같이 집합형식, 기본값 = False ratioal=True : 실수를 유리수로 반환, 기본값 = False positive=True: 해들 중에 양수만을 반환, 기본값 = False 예 $x^2=1$의 해를 결정합니다. solve() 함수에 적용하기 위해서는 다음과 같이 식의 한쪽이 0이 되는 형태인 동차식으로 구성되어야 합니다. $$x^2-1=0$$ import numpy as np from sympy import * x = symbols('x') solve(x**2-1, x) [-1, 1] 위 식은 계산 과정은 다음과 같습니다. $$\begin{aligned}x^2-1=0 \rightarrow (x+1)(x-1)=0 \\ x=1 \; \text{or}\; -1\end{aligned}$$ 예 $x^4=1$의 해를 결정합니다. solve() 함수의 인수 set=True를 지정하였으므로 결과는 집합(set)형으로 반환됩니다. eq=x**4-1 solve(eq, set=True) ([x], {(-1,), (-I,), (1,), (I,)}) 위의 경우 I는 복소수입니다.즉 위 결과의 과정은 다음과 같습니다. $$x^4-1=(x^2+1)(x+1)(x-1)=0 \rightarrow x=\pm \sqrt{-1}, \; \pm 1=\pm i,\; \pm1$$ 실수...