기본 콘텐츠로 건너뛰기

pandas_ta를 적용한 통계적 인덱스 지표

Variance

Variance

As introduced in descriptive statistics, **variance** represents data variability and is calculated as Equation 1, and the square root of the variance becomes the standard deviation (σ).

$$\begin{equation}\tag{1} \begin{aligned}\sigma^2&=E(X-\mu)^2\\&=(x_1-\mu)^2P(X=x_1)+ \cdots+(x_k-\mu)^2P(X=x_k)\\&=\sum^k_{i=1} (x_k-\mu)^2P(X=x_k) \end{aligned} \end{equation}$$

Variance, a measure of the spread of a data distribution, is the weighted average of the squared deviations between each data and the mean. Equation 1 is simplified to:

$$\begin{aligned}&\begin{aligned}\sigma^2&=\sum (x-\mu)^2P(X=x)\\&=\sum(x^2-2x\mu+\mu^2)f(x)\\&=\sum x^2f(x) -2\mu \sum xf(x)+ \mu^2\\&=\sum x^2f(x)-\mu^2\\&=E(X^2)-(E(X))^2 \end{aligned}\\ & \because \sum xf(x)=\mu \end{aligned}$$

As in the above expression, the calculation of variance consists of the expected value of the square of the variable and the square of the mean. The expected value of that variable squared is called the second moment. In other words, the expected value according to the degree of a variable is expressed as a moment for that degree. Therefore, the variance is calculated as the difference between the square of the second moment and the first moment, and since they are all expected values, a linear combination as in Equation 2 is established.

$$\begin{equation}\tag{2} \begin{aligned} Var(aX+b)&=\sigma^2_{ax+b}\\&=E[((aX+b)-\mu_{aX+b})^2]\\ &=E[((aX+b)-E(aX+b))^2]\\&=E[((aX+b)-aE(X)+b)^2]\\&=E[(a(X-\mu))^2]\\&=a^2E[(x-\mu)^2]\\&=a^2\sigma^2_X \end{aligned} \end{equation}$$

A constant added to a variable as in Equation 2 does not affect the variance of that variable.

Example 1)
  The probability mass function of the random variable X is: $$f(x)=\frac{x}{8}, \quad x=1,2,5$$. Determine E(X) and Var(X).

import numpy as np
import pandas as pd
from sympy import * 
import matplotlib.pyplot as plt
x=np.array([1,2,5])
f=x/8
f
array([0.125, 0.25 , 0.625])
Ex=np.sum(x*f)
Ex
3.75
Var=np.sum(x**2*f)-Ex**2
Var
2.6875

Example 2)
 The probability density function of a continuous random variable X is: $$f(x)=\frac{x+1}{8}, \quad 2 < x < 4$$ Determine E(X) and Var(X).

The mean and variance are calculated using the integral of the PDF function. The integral operation applies the itegrate() function of the sympy module.

x=symbols("x")
f=(x+1)/8
Ex=integrate(x*f, (x, 2, 4))
Ex
$\displaystyle \frac{37}{12}$
Var=integrate(x**2*f,(x, 2, 4))-Ex**2
Var
$\displaystyle \frac{47}{144}$

Example 3)
 Calculate the variance of a random variable X with the probability density function

$$f(x)=\begin{cases} 1-|x|& \quad |x|<1\\0& \quad \text{otherwise} \end{cases}$$
x=symbols("x")
f=1-abs(x)
Ex=integrate(x*f, (x, -1,1))
Ex
$\displaystyle 0$
Var=integrate(x**2*f,(x, -1,1))-Ex**2
Var
$\displaystyle \frac{1}{6}$

Example 4)
  Two types of games are played based on the rule that one die is rolled and points are scored according to the eye.

Point 1 2 3 4 5 6
Game 1(x) 1 2 3 4 5 6
Game 2(y) 3 0 6 0 0 12
P(X or Y) $\displaystyle \frac{1}{6}$ $\displaystyle \frac{1}{6}$ $\displaystyle \frac{1}{6}$ $\displaystyle \frac{1}{6}$ $\displaystyle \frac{1}{6}$ $\displaystyle \frac{1}{6}$

Determine the expected value and variance for each game.

game=pd.DataFrame([np.arange(1, 7), np.arange(1, 7),[3,0,6,0,0,12],
                   np.repeat(Rational(1,6), 6)],
                  index=["Dice Eye","game1(x)", "game2(Y)", "P(X or Y)"])
X=game.iloc[1,:]
Y=game.iloc[2,:]
EX=(X*game.iloc[3,:]).sum()
EX
$\displaystyle \frac{7}{2}$
VarX=(X**2*game.iloc[3,:]).sum()-EX**2
VarX
$\displaystyle \frac{35}{12}$
#game2
EY=(Y*game.iloc[3,:]).sum()
EY
$\displaystyle \frac{7}{2}$
VarY=(Y**2*game.iloc[3,:]).sum()-EY**2
VarY
$\displaystyle \frac{77}{4}$

Combine the two dice games in this example to create a new random variable Z and calculate the mean and variance of the probability distribution.

Z=X+Y
X=game.iloc[1,:]
Y=game.iloc[2,:]
Z=X+Y
Z
0 4
1 2
2 9
3 4
4 5
5 18
dtype: object
EZ=np.sum(Z*game.iloc[3,:])
EZ
$\displaystyle 7$
EX+EY
$\displaystyle 7$

As shown in the above result, the expected value of the combined variable is equal to the sum of each expected value. However, the variance of the combined variables is not equal to the sum of the variances of each variable. The variance can be calculated by DataFrame ``object.var()``.

VarZ=np.sum(Z**2*game.iloc[3,:])-EZ**2
VarZ
$\displaystyle \frac{86}{3}$
np.var(Z)
28.666666666666668
VarX+VarY
$\displaystyle \frac{133}{6}$

As the above results show, the variance of the combined variables and the sum of the variances of each variable do not match. This difference can be explained by the process of inducing the variance of the binding variable as shown in Equation 3.

$$\begin{equation}\tag{3} \begin{aligned} &Var[aX+bY]\\&=E[((aX+bY)-(a\mu_X+b\mu_Y)^2)]\\&=E[(a(X-\mu_X)+b(Y-\mu_Y))^2)]\\ &=E[a^2(X-\mu_X)^2+2ab(X-\mu_X)(Y-\mu_Y)+b^2(Y-\mu_Y)] \\ &=a^2E[(X-\mu_X)^2]+2abE[(X-\mu_X)(Y-\mu_Y)]+b^2E[(Y-\mu_Y)] \\ &=a^2Var(X)+b^2Var(Y)\\ & \because \; E[(X-\mu_x)(Y-\mu_Y)]=0 \end{aligned} \end{equation}$$

In Equation 3, E[(X-μx)(Y-μY)] denotes the interaction of two variables. If the two variables are independent, the value of that interaction is zero. Therefore, the difference in variance between the variables X and Y in the example and the associated variable Z provides information that the two variables are not independent.

댓글

이 블로그의 인기 게시물

[Linear Algebra] 유사변환(Similarity transformation)

유사변환(Similarity transformation) n×n 차원의 정방 행렬 A, B 그리고 가역 행렬 P 사이에 식 1의 관계가 성립하면 행렬 A와 B는 유사행렬(similarity matrix)이 되며 행렬 A를 가역행렬 P와 B로 분해하는 것을 유사 변환(similarity transformation) 이라고 합니다. $$\tag{1} A = PBP^{-1} \Leftrightarrow P^{-1}AP = B $$ 식 2는 식 1의 양변에 B의 고유값을 고려한 것입니다. \begin{align}\tag{식 2} B - \lambda I &= P^{-1}AP – \lambda P^{-1}P\\ &= P^{-1}(AP – \lambda P)\\ &= P^{-1}(A - \lambda I)P \end{align} 식 2의 행렬식은 식 3과 같이 정리됩니다. \begin{align} &\begin{aligned}\textsf{det}(B - \lambda I ) & = \textsf{det}(P^{-1}(AP – \lambda P))\\ &= \textsf{det}(P^{-1}) \textsf{det}((A – \lambda I)) \textsf{det}(P)\\ &= \textsf{det}(P^{-1}) \textsf{det}(P) \textsf{det}((A – \lambda I))\\ &= \textsf{det}(A – \lambda I)\end{aligned}\\ &\begin{aligned}\because \; \textsf{det}(P^{-1}) \textsf{det}(P) &= \textsf{det}(P^{-1}P)\\ &= \textsf{det}(I)\end{aligned}\end{align} 유사행렬의 특성 유사행렬인 두 정방행렬 A와 B는 'A ~ B' 와 같...

[sympy] Sympy객체의 표현을 위한 함수들

Sympy객체의 표현을 위한 함수들 General simplify(x): 식 x(sympy 객체)를 간단히 정리 합니다. import numpy as np from sympy import * x=symbols("x") a=sin(x)**2+cos(x)**2 a $\sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}$ simplify(a) 1 simplify(b) $\frac{x^{3} + x^{2} - x - 1}{x^{2} + 2 x + 1}$ simplify(b) x - 1 c=gamma(x)/gamma(x-2) c $\frac{\Gamma\left(x\right)}{\Gamma\left(x - 2\right)}$ simplify(c) $\displaystyle \left(x - 2\right) \left(x - 1\right)$ 위의 예들 중 객체 c의 감마함수(gamma(x))는 확률분포 등 여러 부분에서 사용되는 표현식으로 다음과 같이 정의 됩니다. 감마함수는 음이 아닌 정수를 제외한 모든 수에서 정의됩니다. 식 1과 같이 자연수에서 감마함수는 factorial(!), 부동소수(양의 실수)인 경우 적분을 적용하여 계산합니다. $$\tag{식 1}\Gamma(n) =\begin{cases}(n-1)!& n:\text{자연수}\\\int^\infty_0x^{n-1}e^{-x}\,dx& n:\text{부동소수}\end{cases}$$ x=symbols('x') gamma(x).subs(x,4) $\displaystyle 6$ factorial 계산은 math.factorial() 함수를 사용할 수 있습니다. import math math.factorial(3) 6 a=gamma(x).subs(x,4.5) a.evalf(3) 11.6 simpilfy() 함수의 알고리즘은 식에서 공통사항을 찾아 정리하...

유리함수 그래프와 점근선 그리기

내용 유리함수(Rational Function) 점근선(asymptote) 유리함수 그래프와 점근선 그리기 유리함수(Rational Function) 유리함수는 분수형태의 함수를 의미합니다. 예를들어 다음 함수는 분수형태의 유리함수입니다. $$f(x)=\frac{x^{2} - 1}{x^{2} + x - 6}$$ 분수의 경우 분모가 0인 경우 정의할 수 없습니다. 이와 마찬가지로 유리함수 f(x)의 정의역은 분모가 0이 아닌 부분이어야 합니다. 그러므로 위함수의 정의역은 분모가 0인 부분을 제외한 부분들로 구성됩니다. sympt=solve(denom(f), a); asympt [-3, 2] $$-\infty \lt x \lt -3, \quad -3 \lt x \lt 2, \quad 2 \lt x \lt \infty$$ 이 정의역을 고려해 그래프를 작성을 위한 사용자 정의함수는 다음과 같습니다. def validX(x, f, symbol): ① a=[] b=[] for i in x: try: b.append(float(f.subs(symbol, i))) a.append(i) except: pass return(a, b) #x는 임의로 지정한 정의역으로 불연속선점을 기준으로 구분된 몇개의 구간으로 전달할 수 있습니다. #그러므로 인수 x는 2차원이어야 합니다. def RationalPlot(x, f, sym, dp=100): fig, ax=plt.subplots(dpi=dp) # ② for k in x: #③ x4, y4=validX(k, f, sym) ax.plot(x4, y4) ax.spines['left'].set_position(('data', 0)) ax.spines['right...