기본 콘텐츠로 건너뛰기

pandas_ta를 적용한 통계적 인덱스 지표

빈도수 구하기

1. np.bincount()

1차원 배열과 양의 정수형인 객체에 적용합니다.
객체의 원소중 0부터 최대값 범위의 정수값을 올림차순으로 정리한 뒤 각 원소에 대한 빈도수를 반환합니다.

>>> x=np.random.randint(1, 10, 50)
>>> x
array([7, 9, 5, 8, 1, 6, 8, 5, 1, 3, 2, 6, 2, 3, 3, 8, 6, 5, 9, 5, 9, 8, 8,
       9, 8, 5, 7, 1, 3, 1, 2, 6, 4, 9, 3, 6, 3, 5, 2, 7, 1, 1, 2, 2, 5, 9,
       7, 3, 8, 3])
>>> [min(x), max(x)]
[1, 9]

bincount()는 0 부터 객체x의 최대값인 9까지 각 원소의 빈도수를 계산합니다.
아래의 결과에서 0은 없기 때문에 빈도수는 0입니다.
>>> np.bincount(x)
array([0, 6, 6, 8, 1, 7, 5, 4, 7, 6], dtype=int64)

2. np.unique(객체, return_index=False, return_inverse=Fasle, return_counts=False)

return_index: 고유값이 최초로 나오는 인덱스 반환을 조정하는 인수로 True이면 인덱스를 반환하고 False이면 반환하지 않습니다. 기본값은 False입니다.
return_inverse: True이면 객체를 반환, 기본은 False입니다.return_counts: 객체의 고유값으로 분리한 값의 빈도수를 반환합니다. 기본은 False 결과는 반환되지 않습니다.

>>> uni, count=np.unique(x, return_counts=True)

>>> uni
array([1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> count
array([6, 6, 8, 1, 7, 5, 4, 7, 6], dtype=int64)
이 함수는 부동소수에도 적용된다.

3. np.histogram(객체, binds)


객체를 구간수로 구분하여 각 구간수에 속하는 빈도수를 반환한다.
bins=정수일 경우에는 구간수를 나타내고
bins=연속열 일경우는 오른쪽 구간값을 나타낸다.
예를들어 bins=[0, 1, 2, 3]일 경우 (0, 1], (1, 2], (2, 3]

>>> x=np.random.randint(1, 100, 3000)
>>> y=np.linspace(1, 100, 6)
>>> np.histogram(x, y)
(array([634, 613, 576, 607, 570], dtype=int64),
 array([   1. ,   20.8,   40.6,   60.4,   80.2,  100. ]))

댓글

이 블로그의 인기 게시물

[Linear Algebra] 유사변환(Similarity transformation)

유사변환(Similarity transformation) n×n 차원의 정방 행렬 A, B 그리고 가역 행렬 P 사이에 식 1의 관계가 성립하면 행렬 A와 B는 유사행렬(similarity matrix)이 되며 행렬 A를 가역행렬 P와 B로 분해하는 것을 유사 변환(similarity transformation) 이라고 합니다. $$\tag{1} A = PBP^{-1} \Leftrightarrow P^{-1}AP = B $$ 식 2는 식 1의 양변에 B의 고유값을 고려한 것입니다. \begin{align}\tag{식 2} B - \lambda I &= P^{-1}AP – \lambda P^{-1}P\\ &= P^{-1}(AP – \lambda P)\\ &= P^{-1}(A - \lambda I)P \end{align} 식 2의 행렬식은 식 3과 같이 정리됩니다. \begin{align} &\begin{aligned}\textsf{det}(B - \lambda I ) & = \textsf{det}(P^{-1}(AP – \lambda P))\\ &= \textsf{det}(P^{-1}) \textsf{det}((A – \lambda I)) \textsf{det}(P)\\ &= \textsf{det}(P^{-1}) \textsf{det}(P) \textsf{det}((A – \lambda I))\\ &= \textsf{det}(A – \lambda I)\end{aligned}\\ &\begin{aligned}\because \; \textsf{det}(P^{-1}) \textsf{det}(P) &= \textsf{det}(P^{-1}P)\\ &= \textsf{det}(I)\end{aligned}\end{align} 유사행렬의 특성 유사행렬인 두 정방행렬 A와 B는 'A ~ B' 와 같...

[sympy] Sympy객체의 표현을 위한 함수들

Sympy객체의 표현을 위한 함수들 General simplify(x): 식 x(sympy 객체)를 간단히 정리 합니다. import numpy as np from sympy import * x=symbols("x") a=sin(x)**2+cos(x)**2 a $\sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}$ simplify(a) 1 simplify(b) $\frac{x^{3} + x^{2} - x - 1}{x^{2} + 2 x + 1}$ simplify(b) x - 1 c=gamma(x)/gamma(x-2) c $\frac{\Gamma\left(x\right)}{\Gamma\left(x - 2\right)}$ simplify(c) $\displaystyle \left(x - 2\right) \left(x - 1\right)$ 위의 예들 중 객체 c의 감마함수(gamma(x))는 확률분포 등 여러 부분에서 사용되는 표현식으로 다음과 같이 정의 됩니다. 감마함수는 음이 아닌 정수를 제외한 모든 수에서 정의됩니다. 식 1과 같이 자연수에서 감마함수는 factorial(!), 부동소수(양의 실수)인 경우 적분을 적용하여 계산합니다. $$\tag{식 1}\Gamma(n) =\begin{cases}(n-1)!& n:\text{자연수}\\\int^\infty_0x^{n-1}e^{-x}\,dx& n:\text{부동소수}\end{cases}$$ x=symbols('x') gamma(x).subs(x,4) $\displaystyle 6$ factorial 계산은 math.factorial() 함수를 사용할 수 있습니다. import math math.factorial(3) 6 a=gamma(x).subs(x,4.5) a.evalf(3) 11.6 simpilfy() 함수의 알고리즘은 식에서 공통사항을 찾아 정리하...

유리함수 그래프와 점근선 그리기

내용 유리함수(Rational Function) 점근선(asymptote) 유리함수 그래프와 점근선 그리기 유리함수(Rational Function) 유리함수는 분수형태의 함수를 의미합니다. 예를들어 다음 함수는 분수형태의 유리함수입니다. $$f(x)=\frac{x^{2} - 1}{x^{2} + x - 6}$$ 분수의 경우 분모가 0인 경우 정의할 수 없습니다. 이와 마찬가지로 유리함수 f(x)의 정의역은 분모가 0이 아닌 부분이어야 합니다. 그러므로 위함수의 정의역은 분모가 0인 부분을 제외한 부분들로 구성됩니다. sympt=solve(denom(f), a); asympt [-3, 2] $$-\infty \lt x \lt -3, \quad -3 \lt x \lt 2, \quad 2 \lt x \lt \infty$$ 이 정의역을 고려해 그래프를 작성을 위한 사용자 정의함수는 다음과 같습니다. def validX(x, f, symbol): ① a=[] b=[] for i in x: try: b.append(float(f.subs(symbol, i))) a.append(i) except: pass return(a, b) #x는 임의로 지정한 정의역으로 불연속선점을 기준으로 구분된 몇개의 구간으로 전달할 수 있습니다. #그러므로 인수 x는 2차원이어야 합니다. def RationalPlot(x, f, sym, dp=100): fig, ax=plt.subplots(dpi=dp) # ② for k in x: #③ x4, y4=validX(k, f, sym) ax.plot(x4, y4) ax.spines['left'].set_position(('data', 0)) ax.spines['right...