기본 콘텐츠로 건너뛰기

pandas_ta를 적용한 통계적 인덱스 지표

기본 통계량을 위한 사용자정의함수

#인덱스로부터 훈련과 테스트 그룹을 분리한다.
#rom sklearn.model_selection import train_test_split
#train, test=train_test_split(da, test_size=0.25, random_state=3)로 대체할 수 있다.
def divideTrainS(obj, size, rep):
    x=np.random.choice(obj, size, rep)
    y=np.delete(range(obj), x)
    return([x, y])

#원자료에서 설명변수와 반응변수를 새로 구성한 자료작성
def indDeS(da, deColN, diffDay):
    n=len(da)
    indN=np.delete(range(len(da.columns)), deColN)
    da1=pd.DataFrame(da.ix[:(n-1), indN])
    y=da.ix[:, deColN].shift(-diffDay)
    da1['de']=y
    targD=da.ix[-1, indN]
    return([da1, targD])

#sklearn LinearRegression을 적용하는 경우 summary를 반환하는 함수
def LinearRegSummaryS(model, ind, de):
    re={}
    re["intercept"]=model.intercept_
    re["coef"]=model.coef_
    re["R^2"]=model.score(ind, de)
    p=model.predict(ind)
    res=de-p
    re["SSR"]=np.dot(np.transpose(res), res)
    re["MSR"]=re["SSR"]/(len(ind)-(np.shape(ind)[1]+1))
    return(re)

#다차항 회귀에서 차수 증가에 따른 R2, MSE, SSE의 변화를 반환한다.
 def BestOrderFindS(ind, de, n):
    sse=np.empty(n+1)
    mse=np.empty(n+1)
    r2=np.empty(n+1)
    for i in range(n+1):
        poly=PolynomialFeatures(i)
        x=poly.fit_transform(ind)
        mod=LinearRegression()
        mod.fit(x, de)
        pre=mod.predict(x)
        y1=de-np.mean(de)
        sst=np.dot(np.transpose(y1), y1)
        res=de-mod.predict(x)
        sse[i]=np.dot(np.transpose(res), res)
        mse[i]= sse[i]/(len(x)-(np.shape(x)[1]+1))
        r2[i]= 1-sse[i]/sst
        re=np.c_[r2, mse, sse]
        re.names
    return()  


 #자료의 표준화와 새로운 데이터를 표준화 시킨 평균과 표준편차에 의해 표준화시킴
 class StdardS:
    def __init__(self, d):
        self.d=d
        try:
            self.n=self.d.shape[1]
        except:
            self.n=1
        else:
            self.n=self.d.shape[1]
        if self.n !=1:
            self.mu=[np.mean(self.d[:,i]) for i in range(self.n)]
            self.sd=[np.var(self.d[:,i])**0.5 for i in range(self.n)]
        else:
            self.mu=np.mean(self.d)
            self.sd=np.var(self.d)**0.5
    def stdard1(self):
        if self.n != 1:
            re=[(self.d[:,i]-self.mu[i])/self.sd[i] for i in range(self.n)]
        else:
            re= (self.d-self.mu)/self.sd
        return(np.transpose(re))
    def stdard2(self, nd):
        if self.n != 1:
            self.nd=nd
            re1=[(self.nd[i]-self.mu[i])/self.sd[i] for i in range(self.n)]
        else:
            re1=(self.nd-self.mu)/self.sd
        return(np.transpose(re1))
   
#np.array 구조의 객체 각 원소의 빈도수를 계산한다.
def FreqS(obj):
    idx, cnt=np.unique(obj, return_counts=True)
    re=np.transpose(np.array([idx, cnt]))
    return(re)

#위 함수와 유사하지만 구간의 빈도수를 계산한다. histogram() 함수를 적용
def histS(obj, n):
    cnt, mu=np.histogram(obj, bins=n)
    prob, mu=np.histogram(obj, bins=n, density=True)
    re=np.transpose(np.array([mu[1:], cnt, prob]))
    return(re)

댓글

이 블로그의 인기 게시물

[Linear Algebra] 유사변환(Similarity transformation)

유사변환(Similarity transformation) n×n 차원의 정방 행렬 A, B 그리고 가역 행렬 P 사이에 식 1의 관계가 성립하면 행렬 A와 B는 유사행렬(similarity matrix)이 되며 행렬 A를 가역행렬 P와 B로 분해하는 것을 유사 변환(similarity transformation) 이라고 합니다. $$\tag{1} A = PBP^{-1} \Leftrightarrow P^{-1}AP = B $$ 식 2는 식 1의 양변에 B의 고유값을 고려한 것입니다. \begin{align}\tag{식 2} B - \lambda I &= P^{-1}AP – \lambda P^{-1}P\\ &= P^{-1}(AP – \lambda P)\\ &= P^{-1}(A - \lambda I)P \end{align} 식 2의 행렬식은 식 3과 같이 정리됩니다. \begin{align} &\begin{aligned}\textsf{det}(B - \lambda I ) & = \textsf{det}(P^{-1}(AP – \lambda P))\\ &= \textsf{det}(P^{-1}) \textsf{det}((A – \lambda I)) \textsf{det}(P)\\ &= \textsf{det}(P^{-1}) \textsf{det}(P) \textsf{det}((A – \lambda I))\\ &= \textsf{det}(A – \lambda I)\end{aligned}\\ &\begin{aligned}\because \; \textsf{det}(P^{-1}) \textsf{det}(P) &= \textsf{det}(P^{-1}P)\\ &= \textsf{det}(I)\end{aligned}\end{align} 유사행렬의 특성 유사행렬인 두 정방행렬 A와 B는 'A ~ B' 와 같...

[sympy] Sympy객체의 표현을 위한 함수들

Sympy객체의 표현을 위한 함수들 General simplify(x): 식 x(sympy 객체)를 간단히 정리 합니다. import numpy as np from sympy import * x=symbols("x") a=sin(x)**2+cos(x)**2 a $\sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}$ simplify(a) 1 simplify(b) $\frac{x^{3} + x^{2} - x - 1}{x^{2} + 2 x + 1}$ simplify(b) x - 1 c=gamma(x)/gamma(x-2) c $\frac{\Gamma\left(x\right)}{\Gamma\left(x - 2\right)}$ simplify(c) $\displaystyle \left(x - 2\right) \left(x - 1\right)$ 위의 예들 중 객체 c의 감마함수(gamma(x))는 확률분포 등 여러 부분에서 사용되는 표현식으로 다음과 같이 정의 됩니다. 감마함수는 음이 아닌 정수를 제외한 모든 수에서 정의됩니다. 식 1과 같이 자연수에서 감마함수는 factorial(!), 부동소수(양의 실수)인 경우 적분을 적용하여 계산합니다. $$\tag{식 1}\Gamma(n) =\begin{cases}(n-1)!& n:\text{자연수}\\\int^\infty_0x^{n-1}e^{-x}\,dx& n:\text{부동소수}\end{cases}$$ x=symbols('x') gamma(x).subs(x,4) $\displaystyle 6$ factorial 계산은 math.factorial() 함수를 사용할 수 있습니다. import math math.factorial(3) 6 a=gamma(x).subs(x,4.5) a.evalf(3) 11.6 simpilfy() 함수의 알고리즘은 식에서 공통사항을 찾아 정리하...

유리함수 그래프와 점근선 그리기

내용 유리함수(Rational Function) 점근선(asymptote) 유리함수 그래프와 점근선 그리기 유리함수(Rational Function) 유리함수는 분수형태의 함수를 의미합니다. 예를들어 다음 함수는 분수형태의 유리함수입니다. $$f(x)=\frac{x^{2} - 1}{x^{2} + x - 6}$$ 분수의 경우 분모가 0인 경우 정의할 수 없습니다. 이와 마찬가지로 유리함수 f(x)의 정의역은 분모가 0이 아닌 부분이어야 합니다. 그러므로 위함수의 정의역은 분모가 0인 부분을 제외한 부분들로 구성됩니다. sympt=solve(denom(f), a); asympt [-3, 2] $$-\infty \lt x \lt -3, \quad -3 \lt x \lt 2, \quad 2 \lt x \lt \infty$$ 이 정의역을 고려해 그래프를 작성을 위한 사용자 정의함수는 다음과 같습니다. def validX(x, f, symbol): ① a=[] b=[] for i in x: try: b.append(float(f.subs(symbol, i))) a.append(i) except: pass return(a, b) #x는 임의로 지정한 정의역으로 불연속선점을 기준으로 구분된 몇개의 구간으로 전달할 수 있습니다. #그러므로 인수 x는 2차원이어야 합니다. def RationalPlot(x, f, sym, dp=100): fig, ax=plt.subplots(dpi=dp) # ② for k in x: #③ x4, y4=validX(k, f, sym) ax.plot(x4, y4) ax.spines['left'].set_position(('data', 0)) ax.spines['right...