내용 개요 sympy에 의한 미분 Sympy에 의한 적분 Sympy 객체를 사용한 미분과 적분 개요 모듈 듈 Sympy는 기호(symbol)로 이루어진 수학적 객체의 계산을 다룹니다. 즉, 일반적으로 사용하는 x, y 등과 같은 문자를 수학적 기호로 인식하여 수학식을 표현하는 수단을 제공합니다. 또한 sympy에서 ∞는 알파벳 소문자 o를 두번 연이어 표시하는 것으로 대체합니다. oo = ∞ 다음은 파이썬 코드와 모듈 math, sympy를 사용하여 제곱근을 계산한 결과를 나타낸 것입니다. import math from sympy import * 9**0.5 3.0 pow(9, 0.5) #파이썬 내장함수 3.0 math.sqrt(9) #모듈 math함수 3.0 sqrt(9) #sympy 함수 3 위 결과는 모두 실수로 반환됩니다. 그러나 8의 제곱근과 같이 근사값(무리수)이 반환되는 경우는 그 결과의 표현이 달라집니다. sympy를 사용할 경우 일반적으로 수학적으로 표현하는 방식으로 결과를 반환합니다. round(8**0.5,3) 2.828 round(pow(8, 0.5), 3) #파이썬 내장함수 2.828 round(math.sqrt(8), 3) #모듈 math함수 2.828 sqrt(8) #sympy 함수 $2 \sqrt{2}$ 위의 sympy에 의한 결과 $\sqrt{2}$는 기호입니다. 즉, sympy 객체는 실제 수와 함께 일정한 기호을 사용하기 때문에 다양한 수학적 표현이 가능합니다. sympy 모듈은 $\sqrt{2}$와 같은 자체적으로 지정된 기호외에 symbols() 함수를 사용하여 사용자가 사용하는 기호를 정의할 수 있습니다. x, y=symbols('x y') type(x) sympy.core.symbol.Symbol expr=x+2*y expr x + 2 y 위에서 expr 객체는 기호 x, y를 지닌 객체입니다.
python 언어를 적용하여 통계(statistics)와 미적분(Calculus), 선형대수학(Linear Algebra)을 소개합니다. 이 과정에서 빅데이터를 다루기 위해 pytorch를 적용합니다.